Ecole Centrale Marseille Semester 8 Program

Environment : Management and Technologies

Organized in 2 parts February-March and April-May

Fabien Anselmet

February 2021

Solar Impulse went all around the world, 40 000km, with no fuel...

Cement which removes pollution. Photo-catalytic cement allows to recycle CO_2 emitted by vehicles in a Brussels tunnel.

Environment nowadays

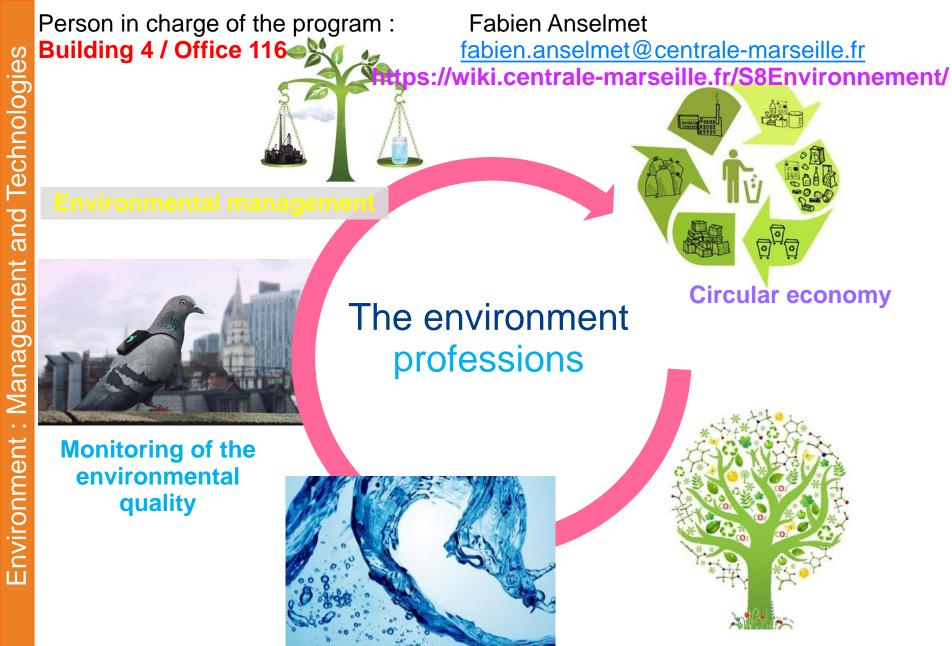
This tyre manufactured by Michelin, whose alveolar structure is inspired from corals, cannot be flat since it contains no air. In addition, its tread, reformable by 3D printing, gives it a very long life. Tyres and weight reduce vehicle CO_2 emissions by 15 to 25%.



Cold combustion. Innoveox converts all hazardous industrial organic waste (phytopharmaceutical products, pyralenes, etc.) into water by Supercritical Hydrothermal Oxidation.

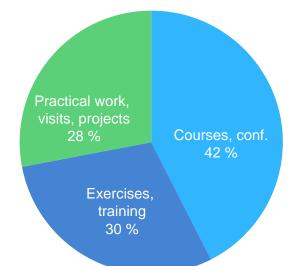
Recycling wastes from agriculture. The CIMV biorefinery transforms agricultural residues into pulp, wood glue and biofuels.

Positioning :

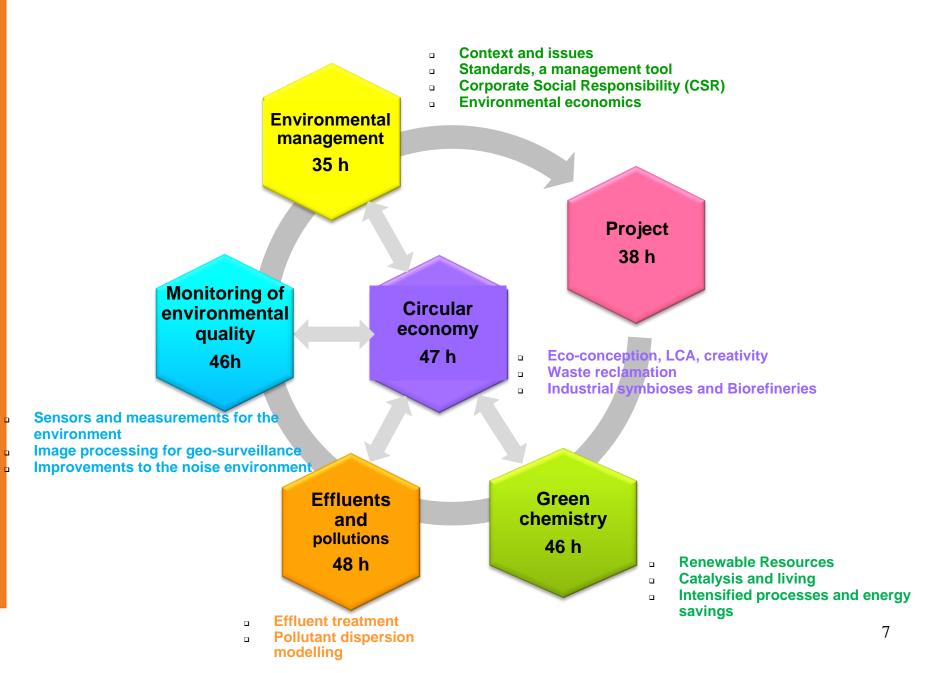

the engineer's tools to develop a sustainable economy

Focused on the circular economy, which opens up the economy of functionality and industrial ecology and eco-design.

The objectives and the issues associated with a sustainable development have been analyzed and classified in a formal way by the United Nations. https://sustainabledevelopment.un.org/ 4



Treatment of effluents and pollutions


Green chemistry

S8 Environment at Centrale Marseille : layout

Teaching Units (TU)	Hours	ECTS	Hours		
			Courses, conferences	Exercises, training	Practical work, visits, projects
Languages - International Culture 4	40	3		40,0	
Effluents and pollutions (semester 1st half)	48	4	26	16	6
Environmental management	35	3	29	6	
Green chemistry	46	4	27,5	10,5	8
Circular Economy (semester 2nd half) Monitoring of the environmental	47	4	19	10	18
Quality	46	4	26	6	14
Project	38	2			38
Internship 2 nd year (2A)	-	6		-	-
TOTAL	300	30	127,5	88,5	84

Program entirely taught in English

Effluents and pollutions

- Coordinator : Nelson Ibaseta
- The TU is concerned with effluent treatment and modelling of effluent diffusion into the environment. It has strong links with the TU "Monitoring" (detection and measurement of pollution) and the TU "Circular economy" (waste reclamation).
- Contents :

Treatment of effluents	
Water treatment	18
Membranes	10
Phytotechnologies : soils and water	3
Diffusion into the environment	
Modelling pollutant dispersion in rivers	12
Radionuclid transfers in rivers (P. Boyer)	3
Visit (Sewage Treatment Plant, STP, Marseille)	
TOTAL	48 h

Environmental management

- Coordinator : Nicolas Clootens
- Environmental management is part of a sustainable development perspective. It integrates technical, regulatory, behavioural and economic components at company level and positions the role and missions of the engineer. Strongly linked to the TU "Circular economy".
- Contents :

TOTAL

Introduction Concepts, principles and history	
Standards, a real management tool	10
Environmental economics	15
Conferences :	8
Questions about energy	
Eco-citizen energy cooperative	
Safety	
Agriculture and water resources	
management	
	05 h

Green chemistry

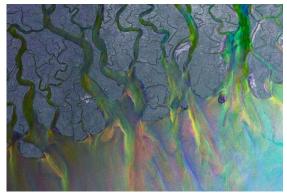
- Coordinator : Damien Hérault
- Green chemistry concerns the industry of processes for material transformation. This teaching unit (TU) provides the essential bases associated with green chemistry and processes and helps to understand the possibilities of recycling and industrial symbiosis, which are presented in the TU "Circular economy".
 - Contents :

Towards a biosourced economy ? (J.R. Llinas)	2
Introduction Green chemistry	2
Reach standards (ML. Martos)	2
Agroresources	10
Catalysis	6
Cells, live factories	6
Practical work	8
Intensification and energy savings	8
Biomimetism (H. Bachellier)	2
TOTAL	46 h

Circular economy

- Coordinator : Christian Jalain
- The TU relies on "Green chemistry" (technological tools) and "Environmental management" (managerial tools), it provides the tools for eco-design, the whole enabling waste to be transformed into new resources, and beyond that to build industrial ecology. This is really the current trend in the economy.
- Contents :

Introduction	2
LCA et Eco-Conception	
Eco-conception	10
Creativity tools (ASIT)	4
Life Cycle Assessment (SIMAPRO)	8
Project	6
Carbon footprint (ADEME Tool)	10
Industrial ecology	
Industrial ecology	2
Concrete examples of industrial ecology (V. Garbal)	3
Visit (Everé)	2
TOTAL	47 h


Contents Contents The quadratic contents The quadratic contents Contents The quadratic contents Contents</l

Monitoring of the environmental quality

- Coordinator : Antoine Roueff
- The TU brings together tools for measuring the quality of water, air and noise environments. In connection with environmental management (standards, monitoring of the territory) and clean effluents (modelling of the diffusion and treatment of pollution).
- Contents :

Environmental acoustics	
Acoustic monitoring of CO2 storage areas	
Teledetection	14
Sensors	8
Sensors for chemistry	6
Air quality (Y. Chanac)	2
Visite of Atmosud air quality monitoring station	2
TOTAL	46 h

Project

- Coordinator : Fabien Anselmet
- Number of hours : 38 h
- Examples of recent subjects :
 - Mosquitoes: study of the toxicity of mosquito bollards (Techno-Beam)
 - · Remediation of polluted soils (Novachim)
 - Study of the deposit of plastic and metal industrial packaging (Novachim)
 - Environmental optimization of Waste Edible Oil filtration (Oleo-déclic)
 - Recovery of atmospheric humidity by "fog catcher" nets (UTEC, Lima)
 - Storage and recycling of soil generated during major works (Geosafe)
 - Characterization of an electronic card without physical destruction (Compagnie de France)