2026/01/08 15:08 1/33 Mémo Arduino du Fablab : Pour débuter

Mémo Arduino du Fablab : Pour débuter

Cette page est a peu pres finie... néanmoins, je sais qu'elle reste a parfaire donc pour
toute remarque, suggestion ou question : justin.cano@centrale-marseille.fr

Ny

@) Bonne lecture !

v
o~
-

Justin Cano

| - Introduction :

™

ARDUINO

Qu'est ce que c'est ?

Les cartes Arduino sont des cartes électroniques programmables, qui ont la particularité de lire et de
générer a la fois des signaux numériques et analogiques. Les sorties étant élaborées en fonction des
valeurs d'entrées qui sont les variables du programme.

Quel est I'intérét alors ? Cela ressemble étrangement a des langages
informatiques traditionnels !

Hé bien, chers lecteurs, c'est qu'une Arduino est capable de lire directement des tensions (comme si
(L)

c'était vous derriere le multimétre | S) | de générer du courant analogique par le biais d'un

hacheur (PWM) et évidemment des variables booléennes (0 ou 5V) tout cela en restant autonome et

au cceur d'un systeme embarqué (typiquement, un robot). D'autres arguments en sa faveur ? Hé bien

le langage de programmation est simple , convivial et surtout en open source ! Et qu'un seul logiciel

\ A 4
et un petit cable USB>MiniUSB suffit! =~

Qu'est-ce qu'on attend donc pour programmer ?

v
o=~
-

Ga, je vous le demande !! Mais téléchargez d'abord le logiciel :

WiKi fablab - https://wiki.centrale-med.fr/fablab/

mailto:mailto:justin.cano@centrale-marseille.fr

;a;;;pdate: 2016/12/09 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

http://arduino.cc/en/main/software

Il - Comment programmer :

A/ Les bases de la syntaxe en Arduino :

On dit qu'un exemple vaut mille mots, donc voici un programme typique, Blink ou clignotement de
LED :

int led = 13:

void setup () {
pinMode (led , OUTPUT) ;
!

volid loop () {
digitalWrite(led, HIGH):
delay(1000]) ;
digitalWrite(led, LOW):
delay (1000 ;

!

On remarque que chaque instruction est composé d'une fonction (int,pinMode...) et se termine par un
point-virgule (semicolon).

On peut découper le programme en trois grandes structures :

Structure de définition :

La premiere partie du programme définit comment vous voulez nommer les entrées-sorties. « int »
en dehors des “voids” le permet...

J) « la patte (ou pin) digitale 13 de mon Arduino s'appellera désormais led par les lois
N
sacrées du programme = »

Structure "Void Setup" (initialisation) :

Cette structure entre accolades ne sera exécutée qu'une seule fois a la mise sous tension de
I'Arduino.

Elle contient également les déclarations de sortie : en effet, toutes les pin (pattes) de I'Arduino

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

http://arduino.cc/en/main/software
https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:programme_blink.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer

2026/01/08 15:08 3/33 Mémo Arduino du Fablab : Pour débuter

sont a défaut des entrées et la syntaxe pinMode(« NomDuPin », OUTPUT) permet de transformer
I'entrée en sortie (respectivement, INPUT permet le contraire). L'obligation de déclaration de sortie
s'explique par le fait qu'il faut que la carte se débloque de son mode courant faible (en gros vous lui

o0
ordonnez d'envoyer de la « puissance », toute relative car les sorties sont limitées a 30mA).

Sy ‘) « Led sera considérée comme une sortie digitale (état haut ou bas) »

Structure "Void Loop" (boucle) :

Structure clé de votre programme, cette derniere sera exécutée en boucle (loop) jusqu'a la mise
hors tension de I'Arduino ou bien de sa reprogrammation.

Ici, on effectue deux fois la commande delay(1000) et deux fois la commande digitalWrite(pin,ETAT)
qui permet de faire basculer une sortie digitale (ou numérique) a un état 1 ou 0...

« [Tartempion] La LED s'allume car digitalWrite(led,HIGH) est synonyme d'état haut
pour notre chére diode...
- puis rien ne se passe durant 1000ms = 1s
(- ensuite la LED s'éteint : digitalWrite(led,LOW) équivaut a un état bas de la diode
b - puis rien ne se passe durant 1s
le programme repart de “[Tartempion]”... et ainsi de suite : c'est un joli clignotant
o0

'

qu'onalall »

B/ Les deux types de pins :

Comme dit ci-dessus, les cartes Arduino servent a étre implémentées dans des circuits électroniques.
Il est donc nécessaire que notre chere carte communique avec le reste du circuit, c'est pour cela que
savoir se servir des pins est tres important.

Il existe deux types de pins servant a cela dans une carte Arduino, quel que soit le modele :

Les pins analogiques : notés Al, A2... An (n et m dépendent du modele)
Les pins numériques (ou digitaux): notés tout simplement 1,2,3... m
Une petite localisation de ces derniers sur I'Arduino Uno :

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:entrees_analogiques-digitales.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

le 13 étant relié par

PINS DIGITAUX))
une piste a la LED

MADE @
IN ITALY —— PATIE AN e
L L B I
DIGITAL (PWM=~

n:ll-_- ARDUINO

ANALUL Lﬂ"'
4 -q- L

o <L

& -
o o

PIN5 ANALOGIQUES

Les pins analogiques permettent une lecture de tension, une lecture d'état booléen ou une écriture
d'état booléen (exemple : mettre la pin led a I'état HIGH).

Les pins digitaux quant a eux permettent de lire et d'écrire des états booléens et d'écrire des états
analogiques (pour certains dotés de la fonction PWM)

NB= nous reviendrons sur ces quatre fonctions d'écriture ultérieurement.

C/ Types de variables :

NB: ceci n'est pas une liste exhaustive, ni rigoureuse, il en existe d'autres, mais pour débuter on se
contentera de ces dernieres :

int:

Cette catégorie de variable, que vous avez déja entr'apercue au B/ sert a définir une variable entiere
relative (la taille dépend de la carte utilisée, mais I'intervalle est au moins par défaut
[-32,768;32,767]).

Comme les pins sont repérés par des entiers (oui, 1, AO et 3 sont des entiers pour Arduino *) elle
peut servir a affecter un nom a un pin
exemple: int led=13

Mais elle sert a bien d'autres choses...

exemple : un compteur : “

void setup () { int i=0; } mise a zéro du compteur et déclaration de variable

void loop () {

“instruction P dont le nombre d'exécution est a compter” (ex: un demi-tour de moteur pas a pas)

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

2026/01/08 15:08 5/33 Mémo Arduino du Fablab : Pour débuter

i++ (incrémentation) }
Bref, a chaque fois que l'instruction P sera exécutée, la variable i s'incrémentera, en d'autre termes
i=NombreDExécutions(P)

Il existe en réalité deux types de variables entieres (modes de int) une variable int
sera par défaut déclarée (suivant le modele de carte Arduino utilisée) dans I'un des
deux :

- long qui permettent de définir des entiers relatifs volumineux (inclus dans

| |
\'P [-2,147,483,648 ; 2,147,483,647] *)

- short qui définit des entiers inclus dans [-32,768;32,767]

NB: si on veut forcer une variable a étre long ou short il suffit de remplacer int dans
la déclaration (par short par exemple), la syntaxe est la méme

float

Son principe d'utilisation est le méme sauf qu'on y stocke des réels en point flotant (compris dans
[3.4028235E+38 ;-3.4028235E+38]) elle est tres utile pour stocker des valeurs de quotients (ex:
conversion de mesures de tension, que I'on traitera plus tard)

Les calculs en point flotants prennent beaucoup plus de temps. En effet, il faut que le
compilateur envoie au programme que des instructions intelligible au
microprocesseur.

e Ce dernier est idiot, il ne comprend que les
additions/soustractions/multiplications/divisions en nombre entier.
e || faut donc lui faire replacer la virgule a chaque opération, et cela demande
\ A 4

vingt fois plus de temps (ou quarante, enfin bref vous m'avez compris >~)

Les floats font 32 bits (1 mot simple) :

¢ 1 pour indiquer le signe du nombre représenté S
8 pour représenter I'exposant E (entier relatif)
23 pour représenter la fraction F (qui permet

Le nombre réel vaut alors (-1)*S * F * 2°E

(A noter que cette représentation mene a des erreurs de précision, la fraction n'étant
3 qu'une approximation du nombre...

WiKi fablab - https://wiki.centrale-med.fr/fablab/

Last update: 2016/12/09
21:23

double

start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

Pareil que le précédent sauf qu'ici, on travaille avec deux fois plus de bits, soit un double mot de 64
bits. La précision est ainsi doublée, tout comme le temps de calcul hélas...

Pour en savoir plus sur I'encodage des réels, vous pouvez consulter ce site web :
http://www.zentut.com/c-tutorial/c-float/

char

A été crée initialement pour coder un caractere (d'ou son nom) en un nombre entier compris entre 0
et 255 (ou entre -128 et 127) :

ex: char LalLettreMysterieuse='Z"'

est équivalent a char LaLettreMysterieuse=90

La ressource pour I'encodage (tableau) est disponible ici

Sinon, il s'agit d'une variable entiere stockée sur 8 bits soit 1 octet.

boolean

Permet d'enregistrer une variable booléene :

qui ne peut prendre que les valeurs “HIGH” ou “LOW”
A A 4

Tres utiles pour les expressions logiques !! =~

D/ Opérateurs élémentaires

Voici un rappel succinct des différents opérateurs mathématiques élémentaires utilisés en Arduino :
NB j'en ai “oublié” volontairement certains dont I'emploi nécessite un besoin (trop) spécifique ou/et

1mg de paracétamol... au choix ! =~

= (affectation)

+ (addition)

- (soustraction)

* (multiplication)
/ (division)

% (modulo)

opérateurs de comparaison

== (égal a)
I= (différent de)
< (strictement inférieur a)

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

http://www.zentut.com/c-tutorial/c-float/
http://arduino.cc/en/Reference/ASCIIchart

2026/01/08 15:08 7/33

Mémo Arduino du Fablab : Pour débuter

> (strictement supérieur a)
<= (inférieur ou égal a)
>= (supérieur ou égal a)

opérateurs booléens

opérateurs de composition

~
o=~
-

Leur emploi est synonyme de paresse ou d’'astuce

++ (incrément)
-- (décrément)

ex: i++; équivaut a i=i+1;

+= (addition composée)

-= (soustraction composée)
*= (multiplication composée)
/= (division composée)

ex: i+=N; équivaut a i=i+N;

opérateurs bitwise

Ce sont des opérateurs permettent une opération bit a bit et non pas de la valeur globale.

Exemple : un caractere char peut étre vu comme un tableau de booléen, par exemple
un char qui vaudrait 42 en décimal, vaut 0x2A en hexadécimal, et il vaut 0000101010

non, on le sait), comment faire pour le prouver ? Il suffit de récupérer le dernier et

‘P en binaire. Maintenant, je veux savoir si ce dernier est divisible par 4 (la réponse est
\ N

I'avant dernier bit, si tous les deux valent 0, on a gagné, c'est un multiple de 4 !
Mais... comment on fait pour récupérer les valeurs ? Eh oui cher public, on va utiliser

les opérateurs bitwise !

Les shifts (décalage de bits)

<< shift vers la gauche
>> shift vers la droite

Exemple : 0b10001011«2 = 0b00101100 et 0b11110000»6 = 0b00000011

WiKi fablab - https://wiki.centrale-med.fr/fablab/

Last update: 2016/12/09
21:23

Shifter « revient a multiplier par deux la valeur représentée (rajouter un zéro, donc ce
serait décupler en décimal, ici c'est doubler car on est en binaire) et shifter » revient a
diviser (retirer un zéro, en décimal décimer)

"‘)
On peut supprimer des valeurs avec ces derniers : il faut faire attention a la taille en
@ bits de la variable, un shift de 8 sur un char (de 8 bits) peut étre vu comme un

écrasement total de sa valeur et ce quel que soit son sens ~ ®

| OU bitwise, ex : 0b1010 | 0b0OOO1 = 0b10O11

& ET bitwise, ex : 0b0101 & 0b1100 = 0b0100O

~ NOR (NON OU) bitwise, ex : 0b1010 ~ 0bl01l1l = 0b00OO1
~ NON bitwise, ex : ~0bl01ll = 0b0100

Operations composées :

|= OU bitwise appliqué a lui méme
~= NOR bitwise appliqué a lui méme (inverse l'état de tous les bits)
&= ET bitwise appliqué a lui méme

start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

Pour revenir a notre exemple : 42 est-il divisible par 4 ? on peut faire la chose suivante
en langage C sous Arduino :

char i = 42;
char bitsOetl = i & Ox00000011; //on selectionne les deux bits
finaux

Puis, on sépare le bit 0 du bit 1, et on fait une comparaison logique sur le dernier bit
des deux chars ainsi obtenus (un OU bitwise ou logique font autant bien I'affaire)

boolean 0OUbits@etl = bitsOetl | (bits@etl>>1);
return ~OUbitsOetl;

La propriété de divisibilité par 4 est vraie si «les deux derniers bits sont tous deux
nuls», c'est a dire si «le bit 1 OU le bit 0 n'est PAS a VRAI».

E/ Fonctions classiques :

Ceci n'est qu'un résumé des syntaxes de ces différentes fonctions : si il subsiste certains doutes
quant a leur emploi, je vous invite a visiter la page suivante

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

http://arduino.cc/en/Reference/HomePage

2026/01/08 15:08 9/33 Mémo Arduino du Fablab : Pour débuter

Les tests

if : “Si la condition est respectée alors les instructions seront exécutées une fois”
if (condition) { instructions }

if (variante avec else (sinon)) : Si le test est vrai alors “instructions si vrai” sinon “instructions si
faux” est exécuté
if (condition) {instructions si vrai} else {instruction si faux}

H NB : Les points-virgules ne sont présents qu'a la fin d'instructions pas des tests et
boucles !

Les boucles

while (tant que): “Tant que la condition sera respectée alors la boucle d'instruction tournera”
while(condition) {instructions }

for : Forme générale
for(initialisation ; test ; incrément\décrément)

exemple : “Je veux que ma boucle d'instructions s'exécute 5 fois.
for(inti=0,i<5;i++) { instructions}

Fonctions utiles (mais spécifiques)

constrain: Contraint une variable a rester dans la norme (tres utile en commande analogique PWM)
y = constrain(x, m, M);

y=Xsim<x<M
y=msix<m
y=MsiM< x

map : Permet d'ajuster une variable en fonction de parametres constants
A =map(x, in_min, in_max, out_min, out_max);

est strictement équivalent a :

A = (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;

goto: = Delete! a utiliser avec modération == Delete!

Cette fonction permet de sortir d'une boucle des qu'elle est exécutée et de “sauter” de boucles en
boucles, ce qui peut se révéler dangereux pour I'exactitude du programme (qui peut ne pas
s'arréter) et occasionner un (gros) bug.

Si on devait résumer goto en quelques mots, c'est la téléportation intrinseque au programme !
[instructionsl;]

:ptdr

WiKi fablab - https://wiki.centrale-med.fr/fablab/

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

[instructions2;]

goto ptdr;

[instructions3;]

a chaque fois que “goto ptdr;” est relue le programme revient a I'étape ":ptdr” ; les instructions2 sont

donc exécutés perpétuellement et les instructions3 jamais

delay : Cette fonction permet de retarder de N millisecondes le programme.
delay(N); delayMicroseconds(n); variante ou n s'exprime en microsecondes

Fonctions mathématiques

Eh, oui ! Arduino les connait... en ce qui concerne la syntaxe, je vous conseille la chose suivante :
float x ; x est un réel

float y ; idem poury

floatz; y = f(x);

Ou f(x) est remplacé par :

min(x,z) < retourne le maximum de (x,z)
max(x,z) < idem pour le minimum

abs (x) < valeur absolue

pow(x,z) < retourne x a la puissance z (réel)
sqrt(x) < racine carrée

sin(x)

cos(x)

tan(x)

Conversion de données

char() < convertit un nombre en mot

int() < fonction "partie entiere"

long() < convertit un nombre en type "long"
float() < convertit un nombre en réel

F/ Les quatre fonctions a action externe spécifiques a
Arduino :

digitalRead :

Permet de contrdler si la tension a laquelle est soumise un pin est haute (5V) ou basse (0V) retourne
la valeur sous une variable booléenne ayant pour valeurs {HIGH,LOW}
I=digitalRead(pin) on affecte a | HIGH ou LOW

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

2026/01/08 15:08 11/33 Mémo Arduino du Fablab : Pour débuter

digitalWrite :

Sans doute la fonction la plus simple et utile des quatre, elle a permis de réaliser le programme Blink
ci-dessus. Quand vous l'appliquez, deux configurations sont possibles : état haut (5V en sortie) ou
état bas (0V en sortie) , les syntaxes respectives sont :

mise a |'état bas : digitalWrite(“Pin”,LOW);

mise a |'état haut: digitalWrite(“Pin",HIGH);

analogRead : Réservée aux pins analogiques

o0
Cette fonction permet de lire sur 1024 points de mesure une tension de 0 a 5V ® En francais pur
et simple cela signifie que si I'on dédie le pin A0 a cette mesure, que I'on le nomme voltmetre (int
voltmetre = A0 ;) alors lorsqu'on exécutera
MesureBrute=analogRead(voltmetre)
MesureBrute prendra alors la valeur d'un entier compris entre 0 et 1024 proportionnel a la valeur de
la tension (1024 pour 5V, 512=1024/2 pour 2.5V etc...). Il est donc nécessaire de convertir cette
mesure brute en mesure réelle, en millivolts :

On peut donc écrire MesureReelle=analogRead(voltmetre)*5000.0/1024.0 ;

A ceux qui ont remarqué les .0 apres les précédents chiffres : ce n'est pas nécessaire
(de les mettre mais conseillé, en effet les mesures réelles sont rarement entieres apres
b de telles divisions, alors pour ne pas perdre de l'information, il est conseillé de les
enregistrer dans des variables de type float (nombres décimaux)

AVERTISSEMENT :

Ne JAMAIS dépasser les 5 volts en entrée d'une Arduino, cela pourrait lui étre fatal.

Mais, on peut ruser en utilisant des ponts diviseurs de tension en vue d'adapter
00

cette derniére & notre chére carte S . Avis aux “stressés” de la manip' = on peut

caler en série une résistance de 10Kohms en entrée de la pin, cela n'altérera pas la

mesure (de I'ordre du microampére) mais préservera la carte d'une éventuelle

-
o=~
-

maladresse...

Réalisation : Testeur de batterie !

analogWrite (PWM ou hacheur en VF) :

Les Arduinos ne délivrent PAS directement du courant continu analogique : ce serait trop facile pour
T~
[)

vous, hein ?
Mais pas de panique ! | existe des moyens de retranscrire en analogique ce que dit notre Arduino, en

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/start:projet:arduino:testeur_batterie

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

effet elle est dotée de pins marqués PWM c'est a dire des hacheurs.

Le PWM est un signal rectangulaire (fréquence de I'ordre de 500HZ) qui est pondéré par un rapport
cyclique r . En fait pour une période de T secondes, on aura r*T secondes de signal haut a 5V et (1-
r)*T secondes de signal bas a 0V.

donc r = DuréeSignalHaut/T

Bon, assez parlé voici une image explicative

Arduino : le PWM (hacheur)

Le PWM est défini par un rapport cyclique r
plus ce dernier est grand, plus la tension sera élevée.

sv-f TensionEfficace = r*5V
R DU Eas ﬂ H H H ici: r=0.2; UEff=1V
50% Duty Cycle J ieir =05 UEf=2 5}
80% Duty Cycle J u H H L ici: r=0.8; Ueff=4V

Source : national instruments
En fait, le rapport cyclique r est codé dans une Arduino entre 0 et 255, c'est a dire qu'il existe 255
niveaux d'ajustement.

Exemple : je veux obtenir une tension en moyenne égale a 2V sur le pin alim2v . Je calculer: r = 2/5
= 0.4 puis je calcule le codage correspondant : CODAGE = r*255 = 0.4*255 = 102 (si le nombre
n'était pas entier il aurait fallu arrondir)

puis j'applique la commande : analogWrite(alim2v, 102);

On pourra utiliser la formule générale : analogWrite(“Pin”,
PartieEntiere[(TensionVoulue/5)*255]);

une variable entiére int .

‘P Remarque : Pour des valeurs de TensionVoulue qui varient il est judicieux d'utiliser
\
Par exemple : int k = TensionVoulue(t)*255/5 ;

Une note spécifique relative a la conversion numérique-analogique sera bient6t
3 mise en ligne

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

2026/01/08 15:08 13/33 Mémo Arduino du Fablab : Pour débuter

¥ i

Attention : afin que votre programme reste dans les cordes, je vous conseille
d'utiliser la fonction constrain afin de limiter la valeur de commande PWM entre 0 et
@ 255. En effet, votre Arduino ne sait pas ce que signifie analogWrite(pin, 267); et va

sortir un beau 0V & la place de 5V ! {im

Petit apercu de ce que ¢a donne a I'oscillo :

Voici une boucle de commande PWM visualisée sur |'oscillo et codée comme suit :

void loop () {

for(int i; 1i<256; i++) { \\

AnalogWrite(Sortie, 1i); \\

delay(10); */ -> valeur arbitraire mais il faut un petit delay pour y voir
guelque chose /* \\

P\
\\

Réalisation : un variateur pour ampoule a incandescence ou moteur CC le principe est le méme...

o
o=~
-

G/ Définir une fonction

Lorsqu'on ne veut pas recopier le méme code plusieurs fois dans le programme, on peut utiliser une
fonction. Elle doit se placer en dehors de void loop() { } et void setup{ } (qui sont d'ailleurs elle-
mémes des fonctions.)

Une fonction doit comporter.

e des arguments (ou variables)
une image (optionnel)

un nom

e un type

une structure de définition

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:pwm.gif?id=start%3Aprojet%3Aarduino%3Apour_commencer
https://wiki.centrale-med.fr/fablab/start:projet:arduino:variateur

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

Types de fonctions

» void = Sans doute le plus courant, cette fonction n'a pas d'image (ie: elle ne renvoie aucun
nombre ou booléen). Cela ne signifie pas qu'elle ne fait rien, elle peut agir sur les
entrées/sorties (digital/analog|Read/Write) mais ces fonctions ne font pas sortir d'informations
directement.

e int -» Permet de renvoyer un entier [CFR plus haut]

« float -» Permet de renvoyer un réel

e char -» Permet de renvoyer une liste de caracteres

e boolean —» Permet de renvoyer une variable booléene

e etc...

Syntaxe

typeDeFonction nomDeVotreFonction(typeDeVariable nomDeVariable, ..., ...) {
instructions; }

NB : On peut avoir autant de variable que I'on veut mais il faut préciser le type au préalable !

Exemples

Clignotant

void blink() {

digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);

}

Cette fonction est sensé faire clignoter une diode a 0.5Hz !

Correction proportionnelle

On se donne un systeme asservi par un capteur donnant une tension Ucapteur on veut une tension
Uconsigne. Une correction proportionnelle est en fait la multiplication de I'erreur fois une constante
d'intégration K. On veut que cette correction nous ressorte un entier compris entre 0 et 255
(commande applicable par PWM|analogWrite) et que tous les parametres soient réglables.

float proportionnele(float Ucapteur, float Uconsigne, float K) {

float Erreur= (Uconsigne-Ucapteur)/Uconsigne;

float CorrectionProportionnelle=Erreur*K;
CorrectionProportionnelle=constrain(CorrectionProportionnelle, 0, 255);
return CorrectionProportionnelle;

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

2026/01/08 15:08 15/33 Mémo Arduino du Fablab : Pour débuter

}

H - Le port serie

par Pierre Salles, que je remercie chaleureusement !
Présentation

“Ce qui se passe dans I'Arduino reste dans I'Arduino”

Ou pas.

Votre PC ne sert pas juste a envoyer une bout de code sur votre carte préférée.
A A 4

Ces deux lascars peuvent entretenir des relations plus que fusionnelles. ~~

La liaison USB sert d'alimentation pour la cartes et les petits projets, mais avec quelques lignes de
codes, vous pouvez accéder a toutes vos variables en temps réels. Vous pouvez aussi envoyer des
instructions a I'Arduino, en utilisant le clavier, la souris. (mais on verra ¢a un peu plus tard).

Fichier Edition Croquis Outils Aide

Moniteur série

3

sketch_feh25a

Le code:

void setup() {

Serial.begin(9600);
Serial.print(“Salut, ”);
Serial.printin(“ca va ?”);
Serial.print(“il fait beau aujourd'hui”);
}

void loop() { }

rajouter image du serial avec ce prog.

[l faut d'abord initialiser la liaison dans le void setup, avec le Serial.begin(). La valeur entre
paranthése est une valeur en bauds.

Cela correspond a un nombre de bits transmis par seconde. Les valeurs de référence sont : 300, 600,
1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, et 115200

Ensuite, le Serial.print() permet d'afficher un texte ou une grandeur sur le moniteur.
Le Serial.printin() permet d'afficher le prochain texte a la ligne suivante.

WiKi fablab - https://wiki.centrale-med.fr/fablab/

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

A quoi ca sert?

Le but n'est bien sur pas d'afficher seulement bonjour.
On peut l'utiliser pour vérifier son programme et essayer de repérer les erreurs.

Exemple :
N
LN J

Mon programme ne marche pas!! Au secours! Que se passe t'il??? =
Aide Dora a trouver la solution...

intx=0;
inty =0;
void setup() {}

void loop () {
while (x<100) {
y++;

}

partie utile du programme qui visiblement ne fonctionne pas

}

Bon, pas besoin de chercher loin, mais c'est juste pour se faire une idée. Si vous ne trouvez pas,
initialisez la liaison Serial comme expliqué précédemment (Serial.begin), et placez correctement les
instructions pour afficher les 2 variables du programme dans le void loop.

Correction :

intx=0;

inty =0;

void setup() {
Serial.begin(9600);
}

void loop () {
while (x<100) {
y++;
Serial.print(“x=");
Serial.print(x);
Serial.print(“ y=");
Serial.printin(y);
delay(500);

}

reste du programme

}

Le delay(u) est une pause de u millisecondes. Si vous avez essayé de faire le programme seuls, sans

/=
| : Z,
mettre cette ligne, vous avez peut étre eu un peu peur

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

2026/01/08 15:08 17/33 Mémo Arduino du Fablab : Pour débuter

Vous pouvez donc expliquer a Dora que la condition de sortie de la boucle n'est jamais vérifiée, et
vous pouvez lui montrer les données du moniteur série pour justifier vos propos.

Mais encore...

On peut quand méme faire plus intéressant avec toutes ces valeurs. Vous pouvez les enregistrer
automatiquement dans un fichier Excel par exemple.

PLX-DAQ

Téléchargez le .zip.

Lancez le .exe

Un nouveau dossier va apparaitre, avec le fichier Excel. L'utilisation d'une macro fait en général
apparaitre un avertissement relatif a la sécurité. Passez outre. Une nouvelle fenetre s'ouvre.

Bon, la base est donnée ici. Cette liaison a beaucoup de potentiel, a découvrir dans la partie

o0
A

Processing pour les intéressés

Il - Utilisation du logiciel

Cette partie est essentiellement pratique : munissez vous d'un PC, d'une carte Arduino
et d'un cable USB

A/ Compilateur

Maintenant que vous savez parfaitement comment se structure un programme, il faudrait maintenant
I'exporter sur la carte. Pour cela, un check-up complet de votre programme va étre réalisé par le
logiciel, je vous propose de coder les programmes suivants afin de cataloguer les erreurs récurrentes

o0
(et énervantes =)

Ma premiere compilation

Tout d'abord, copiez le programme suivant dans la fenétre du logiciel :

int led = 13;

void loop () {
digitalWrite(led,HIGH)

WiKi fablab - https://wiki.centrale-med.fr/fablab/

http://www.parallax.com/downloads/plx-daq

Last update: 2016/12/09
21:23

delay(1000);
digitalWrite(led,LOW);

start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

}

Bien, maintenant que vous avez copié le programme, vérifiez-moi ce dernier (compilation) en cliquant
sur le bouton en forme de coche.

Plein d'écritures oranges apparaissent en bas de I'écran, c'est la panique !
Rassurez-vous, vous avez juste copié des erreurs de compilation basiques et vous allez y remédier.
Le logiciel vous affiche quelque chose comme ca:

core.a(main.cpp.o): In function “main':

C:\Program Files (x86)\Arduino\hardware\arduino\cores\arduino/main.cpp:40: undefined reference to
‘setup'

Le compilateur vous a donc dit qu'il n'existait pas de setup dans votre programme, je I'ai oublié¢ (ia
Bref, insérez au bon endroit la ligne de code suivante :

void setup() {
pinMode (led,OUTPUT) ;

}
Ma deuxieme compilation...

Voici la version corrigée...
int led = 13;

void setup() {
pinMode(led,OUTPUT);

}

void loop () {
digitalWrite(led,HIGH)
delay(1000);
digitalWrite(led,LOW);

}

Fix Me!

Recompilez donc ledit programme et... paf ! Un deuxieme écran d'erreur
Le message dit : sketch_nov18a.ino: In function 'void loop()':
sketch nov18a:8: error: expected ;' before 'delay'

Oups ! Un point-virgule manque a I'appel (I'erreur de loin la plus fréquente) et le logiciel vous dit a
quel endroit c'est...

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

2026/01/08 15:08 19/33 Mémo Arduino du Fablab : Pour débuter

Ma troisieme sera la bonne !

int led = 13;

void setup() {
pinMode(led, QUTPUT) ;

}

void loop () {
digitalWrite(led,HIGH);
delay(1000);
digitalWrite(led,LOW);

}

Recompilez le programme, qui cette fois sera validé en terme de syntaxe Arduino, mais cela ne
signifie pas toujours qu'il fonctionne correctement.

B/ Téléverser un programme

Munissez vous de votre cable USB, et si votre ordinateur ne reconnait pas la carte, allez dans le
gestionnaire des périphériques et installez le driver (se trouve dans le dossier de I'application Arduino,
sous-dossier “drivers”) ou consultez les ressources logiciel du site Arduino.cc

Copiez le programme précédent, il est sensé faire clignoter la LED de votre Arduino.

Puis, appuyez sur le bouton téléverser (fleche vers la gauche) en ayant sélectionné au préalable le
modele de la carte .

(Le téléversement implique une compilation de votre programme, on peut ainsi faire
b les deux étapes d'un coup !

Eh bien quel beau clignotant vous avez la !

Comment ca ? La LED de I'Arduino s'allume continuellement ? o

En fait, elle s'éteint puis s'allume instantanément car j'ai (encore) oublié un truc... une instruction
delay(1000) en bout de programme pour temporiser I'état bas de la LED. Ceci pour vous montrer
qu'un programme peut étre correct au sens du logiciel mais pas pour I'utilisateur...

Rajoutez delay(1000); apres le deuxieéme digitalWrite() puis téléversez une seconde fois et ADMIREZ

! votre travail...

C/ Liens, support logiciel et références

Site officiel d'Arduino

WiKi fablab - https://wiki.centrale-med.fr/fablab/

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

http://arduino.cc/

Références du langage : trés utiles pour ceux qui veulent aller plus loin
http://arduino.cc/en/Reference/HomePage

Toute la gamme Arduino...

http://arduino.cc/en/Main/Products

Téléchargements utiles

http://arduino.cc/en/Main/Software

Ma référence absolue en matiere d'électronique

Avis aux amateurs de transistors

Avis aux amateurs d'AOP

Avis aux amateurs de CMOS

Avis aux amateurs de musique

Ce site risque bien de vous plaire : http://www.sonelec-musique.com

Site d'un "arduinnien" confirmé
https://battomicro.wordpress.com/

Site d'un électronicien que vous reconnaitrez...

4 |
Je sais, se faire de la pub c'est mal @ ... surtout que j'ai lancé le siteily apeu *
Néanmoins : http://nitraced.neowordpress.fr

IV - Une réalisation "sérieuse" :

Magquette d'onduleur 12VDC vers 110VAC utilisant un asservissement commandé Arduino Nano

0 ATTENTION : Cette section a été rédigé par un passionné d'électronique et ne parle
pas beaucoup d'Arduino. Il lui a fallu prés de quatre mois pour réaliser tout ce qui va

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

http://arduino.cc/
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Main/Products
http://arduino.cc/en/Main/Software
http://www.sonelec-musique.com
https://battomicro.wordpress.com/
http://nitraced.neowordpress.fr

2026/01/08 15:08 21/33 Mémo Arduino du Fablab : Pour débuter

suivre, et il en est ressorti traumatisé a vie ~*
Si vous n'avez pas peur... continuez !

A/ Présentation du projet

En fait, j'avais I'intention de réaliser un onduleur 230VAC dans le cadre de mon TIPE.
Or, en CPGE PSI, on ne voit que les composants linéaires (condensateurs, résistances,
0 AOP en régime insaturés, transfos...) donc j'ai di construire un systeme quasiment
7~ ~
O~

-

linéaire. Je dis quasiment, car une Arduino s'insérait dans le montage

Qu'est ce qu'un onduleur ?

Un onduleur est un dispositif permettant de passer d'un courant de basse tension continu (ex:
batterie 12VDC) a un courant alternatif de haute tension (230VAC).

Comment construire un onduleur ?

Le schéma générique est assez simple, il faut générer une onde sinusoidale de fréquence 50Hz
(réseau E.D.F) a partir du 12VDC, que cette derniere soit insaturée en intensité (en clair qu'elle ait
assez de patate !) et la faire rentrer dans un transformateur bien choisi afin qu'il éleve la tension
suffisamment mais pas trop.

Deux problématiques se dresserent donc face a moi...

La qualité du signal

On peut obtenir facilement des tensions alternatives avec des montages simples :

T: 9V->230V

26VA

2
B
RB Ra rhRE =
MONTAGE <
DARLINGTON n

—

ey L

+ [C
=
12v
NEN NEN

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:astable_fini.png?id=start%3Aprojet%3Aarduino%3Apour_commencer

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

Ici, on remarque que le montage de |'oscillateur (multivibrateur astable) est simple (5 transistors,
2 condensateurs, 4 résistances...)
Sans trop chipoter on peut considérer en sortie de I'oscillateur que le signal est presque sinusoidal

Ruse de sioux : on inverse la voie 2...

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:astable_non_inverse.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer

2026/01/08 15:08 Mémo Arduino du Fablab : Pour débuter

et bim !

Mais si on branche une ampoule aux bornes des transistors de puissance...
n '

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:astable_pseudo_sinus.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer
https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:racinosoidal.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

patatras !
L'asservissement en tension

Un jour, mon professeur de SI m'a dit que le rapport d'un transformateur était constant... ce méme

jour j'ai mesuré 500V au lieu de 230V en sortie de ce dernier. Comme quoi, asservir en tension un

onduleur est primordial si vous voulez que votre alimentation de smartphone soit encore valide apres
2

une premiere utilisation ¥

Voici quelques images illustrant le probleme : on fait varier la charge en sortie (ou impédance) et on

se rend compte que la tension d'entrée doit étre inversement proportionnelle a I'intensité demandée

(sans dépasser Imax du transfo tout de méme !)

En effectuant les mesures dans les conditions suivantes :

I 2econdaire

E R S=110v (Constant)

On observe :

f(x) = 265,6655216533x + 50814888651 | U primaire = f (| secondaire)
R? = 0,9987393519

B U primaire (V)
—— Linéaire (U primaire (V))

O =~ N Wh OO N ®©O© O
L
H

0 0,002 0,004 0,006 0,008 001 0,012 0,014 0,016
D'ou|R=265 Ohms m.=216

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:explication_mesure_alpha.png?id=start%3Aprojet%3Aarduino%3Apour_commencer
https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:image_test_alpha.png?id=start%3Aprojet%3Aarduino%3Apour_commencer

2026/01/08 15:08 25/33 Mémo Arduino du Fablab : Pour débuter

B/ Que vient faire Arduino dans ce montage ?

J'ai utilisé une Arduino nano en vue d'asservir ma tension en sortie selon la philosophie suivante :
je vais mesurer quelle tension il y a en sortie, et si c'est trop fort I'arduino va faire en sorte de faire
baisser I'entrée et si c'est trop faible le contraire.

Dans un pur souci de sécurité & de moyens, j'ai réalisé toutes mes expériences en 110V mais la
problématique est quasi-similaire en 230V...

Mais trois problémes ésotériques se dessinerent contre I'utilisation de I'Arduino...

Mesurer...

La tension était en 110V alternatif alors que Umax<5V continus pour mon Arduino.
Il a donc fallu créer un montage redresseur et diviseur de tension sans trop perdre en rapidité &
précision.

Générer le signal sinusoidal

Arduino ne peut pas générer sans “shield” un signal sinusoidal, et comme je ne voulais pas payer

V-
o~

10000000£ pour réaliser ce qu'aurait pu faire un montage analogique... j'ai utilisé des AOP = un
oscillateur a pont de Wien pour étre plus précis :

Oucillateur & pont de Wisn
12

—
| S

| |
‘ "‘f"’ K
o
kW av
+k.LC
A it
s N A dld L[kl il
11—k} kL
t d R ol c. R ol

Voici le signal en sortie de ce nouvel oscillateur :

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:wien_schema.png?id=start%3Aprojet%3Aarduino%3Apour_commencer

;a;;;pdate: 2016/12/09 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

WIEM Gl

2
o~
-

Et son spectre, super centré
e S0 Hz 100Hz

|

l ||_ ol r | [L
IJ []Ir' llll-ll.llr]nh"\._J IIlr'IIII l['.qli'iﬂ |J|-|||Jr|'l' I_I 'I ']L“r ..1"'”[.] llﬂi]F'-Jr l'] LI[‘ \pl' -IIJ'IF ﬁ\]nl'lnl‘lln"lir';]‘

Controler le tout en entrée, grace a la Nano

J'ai fait une chose assez stupide pour le controle de I'entrée par I'Arduino (je voulais a tout prix faire
de I'asservissement linéaire, voila pourquoi) j'ai réalisé le tout en trois étapes :

Lissage du PWM (signaux rectangulaires en sortie de I'Arduino)

Comme il ne restait plus rien, premiere amplification (A2)

Multiplication par le signal constant en amplitudea 50 Hz du pont de Wien

Amplification de puissance

Transformation du signal (“amplification” inductive)

Redressage d'une partie infime du courant, lissage et adaptation en vue de contrdler la valeur
de I'amplitude en sortie.

ouhkwne=

Tout se lit dans le schéma suivant :

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:quasisinus_wien.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer
https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:quasisinus_analyse_de_spectre_wien.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer

2026/01/08 15:08 27/33 Mémo Arduino du Fablab : Pour débuter

RA (multiplicateur)
e H ! m +ﬂ0 DE PUISSANCE
CA 2 : 5 >L]
Al
ﬁ RB2 _F_%

L pna e I CHARGE |'
! + | =1
1 2 |- A3 1 =
RA cA R2 '
T . T 14887
. R1 R3 l %
ARDUINO
PONT DE WIEN wo (uc) [QREE{ pc|] e
R4 —i’
-
CONVERTISSEUR Chaine de mesure

PWM-ANALOGIQUE

C/ Correction et codage adapté

Une étude de I'asservissement m'a révélé qu'une correction intégrale suffisait (je ne cherchais pas
une rapidité folle (50HZ, c'est faible et mes oscillos étaient a la ramasse c6té mesures/secondes”™ ™).
Le schema-blocs était le suivant (les constantes étant obtenues en régime permanent ou temporel
expérimentalement (tests de réponses en boucle ouvertes, mesures d'impédance par
ampéremetre/voltmetre...) :

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:tipe_onduleur_wien_21-12-13_legende.png?id=start%3Aprojet%3Aarduino%3Apour_commencer

Last update: 2016/12/09
21:23

start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

chaine d'action

-1/ charge—|

/K

Uc(p) : b 2

Amplificateurs et source de Comecteur
tension sinusoidale asservie

l._______.-

k |-

-
Us(p)

Détermination des parameétres

* 1ier Ordre : * Facteur K :
120 GA1=11GA2=3
Us(¥) 12 GA1 GAZ
100 g = 1R
2
il
* Facteur k = 0,0055
&0
40 T=0.2s

a0

i
0 200 400 600 800 1000 1200_ 140D
Mesure de la réponse du systeme T(ms)

(sans retour, ni charge ,ni correction)

Divers diagrammes pour prouver la stabilité de mon systéme faits sous Scilab :

Diagramme de black

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:asservissement_slide.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer

2026/01/08 15:08 29/33

Mémo Arduino du Fablab : Pour débuter

s

Marge de gaiy infinie ; Mphase : 7835 a

1.03 radis

&2

4

Entrée : ebo Sortie : sho

2]

-22

-4

N 8798

Magnitude (dB)

-1

4y 6912
-123

B032
140

-183 ' I ' I ' I ' 1 I ' I
-180 -170 -1@2 -150 -140 -130
Phase(deg)

Diagramme de Bode

-120

-110 -102 R=l]

Marge de gain infinie ; Marge de phsse : 78.35"
80+
2 -1 Iy 1 2 3
10 1If! 10 10 10 10
— b H 1 H H L 1 1 L Culpation (radis)
a |
= .
- |
E: -5 |
= .
E |
<L -100 — I
|
=150)
-2 -1 1] 1 2 3 4
10 10 10 10 10 10 10
| 1 | 1 | | 1 |
Pulzatisn {rardi<)
-100 T !
£ I
I
> =120 A |
2
2 =140
x | I
=160 | \
I
183 . _|________
Entrée : ebo Sortie : sha |

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:diagramme_de_black.gif?id=start%3Aprojet%3Aarduino%3Apour_commencer
https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:diagramme_de_bode.gif?id=start%3Aprojet%3Aarduino%3Apour_commencer

Last update: 2016/12/09

21:23 start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

Codage Arduino

AR
[
Ce programme ultra-court suffisait (ceci prouve I'efficacité d'Arduino ™
int conmands = 3;
test = AD;
int led = 13;

t Uc = &600;

it K = 0.01;
int totalEcart=0;
int congigne = 90;

id setup() |

pinfode [commande, OQUTPUT):
pinMode{ led , |:”.TI"UT:|;
ligitalWricte(led, HIGH):
delay (10000 ;

figitalWrite|! led, LOW):

vold loop () !
oat mesure = 0;
loat erreur = 0
float MesureTot = 0;
for {(int i = 0; i<l0ziH+) |
float M=0;
H=analogFead{test)*5000.0/1024.0;
HesureTot+=M;
delay(l):
}
mesure=MesureTot/10;
erreur=Uc-mesure;
consignes+=1int (ecreur*k) ;
consigne= constrain(consigne,f90,255);
analogirite (commande, consigne) ;
lelay(l):

D/ Résultats (positifs !!

Je vous laisse juger tout cela grace a des images :

Fidélité du modele

Scilab :

\ A 4
(vérifiez le temps de réponse et les asymptotes ~)

https://wiki.centrale-med.fr/fablab/ Printed on 2026/01/08 15:08

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:arduino.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer

2026/01/08 15:08 31/33 Mémo Arduino du Fablab : Pour débuter

Réalité :

Us(V)
116

Us(t)

114
112
110
108
106
t(s)

104
0 05 1 15 2 25 3 35

L'écart est d(i au faible encodage de I'Arduino a 600mV et a mon oscillo... aussi !
Utilité de l'asservissement

Sans lui : le smartphone grille...

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:rt_zoom_2.gif?id=start%3Aprojet%3Aarduino%3Apour_commencer
https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:reponse_temporelle_experimentale.png?id=start%3Aprojet%3Aarduino%3Apour_commencer

Last update: 2016/12/09

21:23

start:projet:arduino:pour_commencer https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0,000

12000 14000

10000

6000

4000

Avec lui : il survit...

o
JR— T T T T T T T T T T T T T -
@ 1 1 1 1 1 1 1 1 1 1 1 |
-1 I A S A N IR
2 1 1 1 1 1 1 1 1 1 1 1 1
[T PO (R B | T TR NN Y O A P N [N
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 p
1 1 1 1 1 1 1 1 L
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
+ + F 1 +- -+ - --fFm
1 1 1 1 1 1 |
1 1 1 1 1 1 T
1 1 1 1 1 1 1 F
1 1 1 1 1 1 1
1 1 1 1 1 1 1
T T r 1 T--"1--"r--prM
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 | 1 1 1
1 | | 1 =
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 L T
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
7 7 T--r--r--F°
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 | 1 1 1
1 1 i 1 T i i 1 1 AT TIiTTTTTroopw™
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
| 1 U . | 1__L__ L}y
1 1 [1 1 1 1 1 1 [1 1
1 1Tr_ 1 1 1 1 1 1 1 1 1 1 1
1 v 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 - 1 1 1 1 1 1 1 1 1 1
F - -1- - = - H--4 L e o el L e R T S e
1 5 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 U 1 1 1 1 1 1 1 1 1 1 [|
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
LI DL | T T T T T 77 T T T T r 1T T1T o
o o =] i] o =] i =] o (=} (3]
m o] (] %] (&} L8] - - - — -

Printed on 2026/01/08 15:08

https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:mesure_non_boucle.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer
https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:reponse_temporelle.png?id=start%3Aprojet%3Aarduino%3Apour_commencer

2026/01/08 15:08 33/33 Mémo Arduino du Fablab : Pour débuter

Qualité du signal

Signal d'entrée (Wien) Signal de sortie (Transfo)

4 %=
: MERCI D'AVOIR TOUT LU ¥

From:
https://wiki.centrale-med.fr/fablab/ - WiKi fablab

Permanent link:
https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

Last update: 2016/12/09 21:23

WiKi fablab - https://wiki.centrale-med.fr/fablab/

https://wiki.centrale-med.fr/fablab/_detail/start:projet:arduino:onduleur:qualite_du_signal.jpg?id=start%3Aprojet%3Aarduino%3Apour_commencer
https://wiki.centrale-med.fr/fablab/
https://wiki.centrale-med.fr/fablab/start:projet:arduino:pour_commencer

	Mémo Arduino du Fablab : Pour débuter
	I – Introduction :
	Qu'est ce que c'est ?
	Quel est l’intérêt alors ? Cela ressemble étrangement à des langages informatiques traditionnels !
	Qu'est-ce qu'on attend donc pour programmer ?

	II – Comment programmer :
	A/ Les bases de la syntaxe en Arduino :
	Structure de définition :
	Structure "Void Setup" (initialisation) :
	Structure "Void Loop" (boucle) :

	B/ Les deux types de pins :
	C/ Types de variables :
	int :
	float
	double
	char
	boolean

	D/ Opérateurs élémentaires
	opérateurs de comparaison
	opérateurs booléens
	opérateurs de composition
	opérateurs bitwise

	E/ Fonctions classiques :
	Les tests
	Les boucles
	Fonctions utiles (mais spécifiques)
	Fonctions mathématiques
	Conversion de données

	F/ Les quatre fonctions à action externe spécifiques à Arduino :
	digitalRead :
	digitalWrite :
	analogRead : Réservée aux pins analogiques
	analogWrite (PWM ou hacheur en VF) :
	Petit aperçu de ce que ça donne à l'oscillo :

	G/ Définir une fonction
	Types de fonctions
	Syntaxe
	Exemples
	Clignotant
	Correction proportionnelle

	H - Le port serie
	Présentation
	A quoi ça sert?
	Mais encore...

	III - Utilisation du logiciel
	A/ Compilateur
	Ma première compilation
	Ma deuxième compilation...
	Ma troisième sera la bonne !

	B/ Téléverser un programme
	C/ Liens, support logiciel et références
	Site officiel d'Arduino
	Références du langage : très utiles pour ceux qui veulent aller plus loin
	Toute la gamme Arduino...
	Téléchargements utiles

	Ma référence absolue en matière d'électronique
	Site d'un "arduinnien" confirmé
	Site d'un électronicien que vous reconnaîtrez...

	IV – Une réalisation "sérieuse" :
	A/ Présentation du projet
	Qu'est ce qu'un onduleur ?
	Comment construire un onduleur ?
	La qualité du signal
	L'asservissement en tension

	B/ Que vient faire Arduino dans ce montage ?
	Mesurer...
	Générer le signal sinusoïdal
	Contrôler le tout en entrée, grâce à la Nano

	C/ Correction et codage adapté
	Divers diagrammes pour prouver la stabilité de mon système faits sous Scilab :
	Diagramme de black
	Diagramme de Bode

	Codage Arduino

	D/ Résultats (positifs !!)
	Fidélité du modèle
	Scilab :
	Réalité :

	Utilité de l'asservissement
	Sans lui : le smartphone grille...
	Avec lui : il survit...

	Qualité du signal

