
04/02/2026 07:37 1/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

Dev mobile 102 : Components, Navigation et
API

Prérequis

Pour suivre cette formation, il faut évidemment avoir suivi la Dev mobile 101. Et aussi, vraiment, la
Dev web 104: le JavaScript.

Le projet

Pour avoir un fil conducteur tout au long de ces formations, nous allons créer une application qui
pourrait être utile au GInfo : elle permettra aux utilisateurs de laisser un feedback anonyme sur les
formations.

Les Components

C'est quoi un component ?

Avec cette formation, vous allez découvrir ce qui fait la puissance de React (et que React Native
utilise aussi) : les components. Lors de la précédente formation, vous avez probablement entendu ce
mot, pour parler des 'balises' JSX, comme <View> ou <Text> par exemple. Ce sont des components.

Et la grande force de React, c'est que maintenant, nous allons créer nos propres Component ! Vous
pourrez ainsi définir, par exemple, un component Utilisateur qui affiche joliment un utilisateur, et
dans toutes vos pages qui ont besoin d'afficher un utiliasteur, vous mettrez simplement
<Utilisateur/> dans le JSX, au milieu des autres components de React Native.

Je suis désolé mais en vrai c'est trop stylé.

Créer un component

Nous allons créer un premier component. Tout d'abord, créons un dossier Components dans notre
projet, et un fichier Home.js dedans.

https://wiki.centrale-med.fr/ginfo/formations:devmobile_1
https://wiki.centrale-med.fr/ginfo/formations:devweb_4

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

Ensuite, nous devons importer React, afin d'utiliser la classe React.component. En effet, nous
allons ensuite définir une nouvelle classe, héritant de cette classe générique. À la fin du fichier, on
exporte cette classe. Cela permettra à d'autres fichiers de l'utiliser.

import React from 'react';

class Home extends React.Component {

}

export default Home;

Les components doivent forcément disposer d'une méthode render, qui retourne une vue JSX. Nous
allons faire le minimum pour notre component Home :

import React from 'react';
import {View, StyleSheet} from "react-native";

class Home extends React.Component {
 render() {
 return (
 <View style={styles.redView}/>
)
 }
}

const styles = StyleSheet.create({
 redView: {
 flex:1,
 backgroundColor: '#f00',
 }
});

export default Home;

On a simplement crée la méthode render, qui retourne une View, avec une StyleSheet pour
accueillir nos styles. N'oubliez pas les import !

04/02/2026 07:37 3/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

Utilisons notre component

Pour utiliser notre component, nous allons modifier le App.js. Il faut importer le component Home, et
l’appeler dans le JSX. Ici, le component est seul.

import Home from "./Components/Home";

export default function App() {
 return (
 <View style={styles.container}>
 <Home/>
 </View>
);
}

Et maintenant, quand on lance l'application, on voit une page toute rouge ! On a bien créé et utilisé
un component.

Un peu de pratique

Maintenant, nous allons utiliser ce component Home pour créer la page d’accueil de noter application.
Modifiez le fichier Home.js pour obtenir une page d'accueil de ce type :

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

vous pouvez utiliser cette image de fond :

04/02/2026 07:37 5/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

Correction :

import React from 'react';
import {View, StyleSheet, Image, Text, TouchableOpacity} from "react-
native";

class Home extends React.Component {

 goBtn = () => {
 console.log('OUIIIIIII')
 }

 render() {
 return (
 <View style={styles.redView}>
 <Image source={require('../assets/forma_bkg.jpg')}
style={styles.imgBackG}/>
 <View style={styles.titleContainer}>
 <View style={styles.title}>
 <Text style={styles.titleText}>Bienvenue sur
l'appli des FeedBacks !</Text>
 </View>
 </View>
 <View style={styles.goBtnContainer}>
 <TouchableOpacity style={styles.goBtn}
onPress={this.goBtn}>
 <Text style={styles.goBtnText}>C'est parti !</Text>

https://wiki.centrale-med.fr/ginfo/_media/formations:forma_bkg.jpg

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

 </TouchableOpacity>
 </View>
 </View>
)
 }
}

const styles = StyleSheet.create({
 redView: {
 flex:1,
 },
 imgBackG: {
 position: 'absolute',
 top: 0,
 left:0,
 bottom:0,
 right: 0
 },
 titleContainer: {
 flex: 2,
 alignItems: 'center',
 justifyContent: 'center',
 },
 title: {
 backgroundColor: '#000000A0',
 padding: 20,
 margin: 20,
 borderRadius: 10,
 },
 titleText: {
 color: '#fff',
 fontSize: 25,
 fontWeight: 'bold',
 textAlign: 'center',
 },
 goBtnContainer: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'flex-start',
 },
 goBtn: {
 backgroundColor: '#42b649',
 padding: 10,
 borderRadius: 100,
 elevation: 10,
 },
 goBtnText: {
 color: '#fff',
 fontSize: 20,
 fontWeight: 'bold'
 }

04/02/2026 07:37 7/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

});

export default Home;

La Navigation

De quoi on parle ?

On vient de créer une page d'accueil pour notre application, avec un joli bouton “C'est parti !”. Mais
pour l'instant, ce bouton n'a aucun effet. Mais que doit faire ce bouton ?

Su un site web, vous vous attendriez à ce que ce bouton vous renvoie vers une autre page. C'est
exactement ce que nous voulons faire. Pour cela nous allons utiliser la Navigation, pour naviguer
entre nos vues. La navigation n'est pas incluse directement dans react-native, il faut l'installer :

npm install react-navigation react-navigation-stack

Créer un Navigator

Pour implémenter une navigation, nous allons créer un StackNavigator. Il existe plusieurs styles de
Navigator, vous pourrez regarder leurs particularités sur la documentation. Le StackNavigator
est le plus simple : les vues (ou 'pages') sont conceptuellement empilées les unes sur les autres
(visuellement, on n'a que la vue du dessus de la pile qui est affichée); ce qui permets par exemple
une gestion du bouton de retour très naturelle.

Commençons par créer un dossier Navigation, et dedans, un fichier Navigation.js.

Dedans, nous allons importer les fonctions permettant de créer un StackNavigator et de l'exporter,
pour le mettre à disposition des autres fichiers. Voilà le code :

import {createStackNavigator} from 'react-navigation-stack';
import {createAppContainer} from 'react-navigation';

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

const AppNavigator = createStackNavigator({})

export default createAppContainer(AppNavigator);

Maintenant, tout va se passer dans le createStackNavigator. On ajoute le component Home en
premier (sans oublier de l'importer). Pour ne pas revenir dessus, on va aussi créer un component
FormaList, qu'on modifiera plus tard (pour l'instant une page rouge suffit). Et on l'ajoute aussi au
StackNavigator :

import Home from '../Components/Home'
import FormaList from "../Components/FormaList";

const AppNavigator = createStackNavigator({
 Home: {
 screen: Home
 },
 FormaList: {
 screen: FormaList
 }
})

Et pour utiliser cette navigation dans l'appli, on va simplement modifier le App.js : remplacer
import Home from './Components/Home'; par import Navigation from
'./Navigation/Navigation';; et <Home/> par <Navigation/> dans le JSX. On lance l'appli…
et on voit que seul le component Home est affiché (car c'est le premier dans la liste).

04/02/2026 07:37 9/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

Naviguons

Jusqu'à maintenant, on a mis en place une navigation, c'est cool… mais rien n'a changé dans notre
application. Rappelons que l'objectif était de pouvoir cliquer sur le bouton 'C'est parti !' et arriver sur

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

une autre page.

Tout d'abord, il faut gérer le clic sur le bouton. Les TouchableOpacity ont une prop onPress, qui
prends la fonction à appeler lorsqu'on appuie dessus. On va donc ajouter onPress={this.goBtn},
et créer la méthode goBtn dans notre component :

 goBtn() {
 console.log('OUIIIIIII')
 }

Comme ça, lorsqu'on clique sur le bouton, la console affiche 'OUIIIIIII'. Donc on sait déclencher une
action par un clic. Maintenant, on va modifier goBtn pour ajouter la navigation (on la passe en
fonction fléchée pour pouvoir utiliser this) :

 goBtn = () => {
 console.log('OUIIIIIII')
 this.props.navigation.navigate('FormaList')
 }

Et quand on clique… TADAAMMM ! On arrive sur une vue toute rouge, avec 'FormaList' en titre ! On a
bien navigué.

04/02/2026 07:37 11/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

Se connecter à une API Web

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

Rappel des objectifs

Le projet est de faire une application permettant aux utilisateurs d'accéder à la liste des formations
du GInfo et à la liste des sessions de chaque formation, afin qu'ils puissent laisser des commentaires
sur chaque session.

Cela nécessite de partager un certain nombre de données entre les différent utilisateurs : les
formations, les sessions, et les commentaires. Autrement dit, nous avons besoin d'un back-end. Étant
donné que ce n'est pas le sujet de cette formation, nous avons développé le back-end, qui est
acessible à l'adresse https://feedback-forma.ginfo.centrale-marseille.fr. Elle est toute simple, et
réponds aux routes suivantes :

/list - JSON La liste des formations (id, nom, image, description)
/img/{nom_de_l'image} - lien pour accéder à l'image
/forma/{id_de_la_formation} - JSON La formation portant l'id correspondant (id, nom,
image, description)
/forma/{id_de_la_formation}/sessions - JSON La liste des sessions de la formation
concernée (id, formaId, dateTime, formateurs)
/session/{id_de_la_session} - JSON La session portant l'id correspondant (id, formaId,
dateTime, formateurs)
/session/{id}/coms - JSON La liste des commentaires de la session (id, sessionId, dateTime,
contenu)

Et une autre route pour l'envoi de commentaires (ce sera pour une autre fois héhé).

fetch

La prochaine étape pour l'application est de récupérer des données de cette API. Pour cela, on utilise
fetch, la fonction qui permets de faire des requêtes HTTP en JS. Dans le component FormaList, on
va ajouter une méthode loadFormas, qui récupère la liste des formations.

 loadFormas() {
fetch('https://feedback-forma.ginfo.centrale-marseille.fr/list').then((respo
nse) => {
 return response.json()
 }).then((data) => {
 console.log(data[0]);
 })
 }

Cette fonction va simplement récupérer la liste des formations, et afficher la première dans la
console. Avec fetch, on utilise then, car ici on veut faire de la programmation asynchrone (on
récupère la réponse, PUIS on utilise les données), ce qui n'est pas le cas du JS en général.

https://feedback-forma.ginfo.centrale-marseille.fr

04/02/2026 07:37 13/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

Cette liste de formation qu'on récupère, il va aussi falloir la stocker. On va donc ajouter des attributs à
notre component : isLoading, pour pouvoir afficher une écran de chargement, et formas, pour
stocker la liste des formations. On les crée dans le constructor (faites de la POO merde). Et on va
les modifier dans la méthode loadFormas :

 constructor(props) {
 super(props);
 this.formas = [];
 this.isLoading = true;
 }

 loadFormas() {
 if(this.isLoading){
fetch('https://feedback-forma.ginfo.centrale-marseille.fr/list').then((respo
nse) => {
 return response.json()
 }).then((data) => {
 this.formas = data
 this.isLoading = false
 setTimeout(() => {this.forceUpdate()}, 1000)
 })
 }
 }

À quoi sert l'attribut isLoading, et que fait la méthode forceUpdate (et pourquoi utilise-t-on ce
setTimeout) ? On modifie le render, en ajoutant aussi les méthodes displayLoading et
displayFormas (pour faire plus propre) :

 displayLoading() {
 return (
 <View style={styles.redView}>
 <ActivityIndicator size="large" color="#00ff00" />
 </View>
)
 }

 displayFormas() {
 return (
 <View style={styles.blueView} />
)
 }

 render() {
 this.loadFormas()
 return (
 <View style={styles.mainContainer}>
 {this.isLoading ? this.displayLoading() :
this.displayFormas()}
 </View>
)

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

 }

Avec tout ce code, voilà ce qu'il se passe lorsqu'on clique sur le bouton pour passer sur la page
FormaList :

Le constructor est exécuté : formas = [] et isLoading = true1.
La méthode render s'exécute une première fois : elle appelle la méthode loadFormas, mais2.
retourne quand même une valeur. Vu que isLoading est vrai, on prends l'expression avant les
deux points, donc displayLoading, qui rends une page rouge avec un ActivityIndicator
vert.
La méthode loadFormas s'exécute. On entre dans le if, on envoie une requête pour avoir la3.
liste des formations. Lorsqu'on la reçoit, on mets cette liste dans formas et isLoading =
false (on a finis de charger). On appelle le setTimeout
setTimeout, c'est simple : ça va permettre d'exécuter un code (ici on appelle forceUpdate)4.
après un délai (ici 1000ms = 1 seconde). Si on ne mets pas ça, la page de chargement va
s'afficher pendant moins de 20ms, donc c'est moche
Après 1 seconde donc, le forceUpdate est appelé. Il permets simplement de recharger le5.
component, c'est à dire qu'il appelle une nouvelle fois render.
render est appelé, mais cette fois-ci isLoading est faux, donc on passe dans la deuxième6.
option : displayForma. C'est ici qu'on va faire notre vraie page !

Vous avez tout compris ? Cool. Maintenant, on va afficher ces formations !

Une FlatList

Les FlatList, c'est cool. En gros c'est comme si tu avais une boucle for sur les éléments d'une
liste, qui à chaque fois ajoute un certain component pour représenter l'élément, sauf que ça le fait
tout seul. Voilà la syntaxe :

 displayFormas() {
 return (
 <ScrollView style={styles.mainContainer}>
 <FlatList
 data={this.formas}
 keyExtractor={(item) => item.id.toString()}
 renderItem={({item}) => <FormaItem forma={item}/>}
 />
 </ScrollView>
)
 }

On a mis une ScrollView pour pouvoir scroller dans la liste si elle est trop longue. Et il va falloir
créer ce component FormaItem, et l'importer ici ! Mais comment récupérer la formation concernées
? On a écris <FormaItem forma={item}/>, c'est à dire qu'on a ajouté une prop ayant pour nom
forma et pour valeur l'élément concerné. Dans le component FormaItem, on va par exemple pouvoir
récupérer le nom de la formation :

<Text style={styles.titleText}>{this.props.forma.nom}</Text>

Le component en entier si vous avez pas le temps, pour voir ce que ça peut donner :

04/02/2026 07:37 15/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

class FormaItem extends React.Component {

 render() {
 return (
 <View style={styles.redView}>
 <Image
source={{uri:'https://feedback-forma.ginfo.centrale-marseille.fr/img/'+this
.props.forma.image}}
 style={styles.imgForma}
 />
 <View style={styles.titleView}>
 <Text
style={styles.titleText}>{this.props.forma.nom}</Text>
 </View>
 </View>
)
 }
}

const styles = StyleSheet.create({
 redView: {
 backgroundColor: 'grey',
 alignItems: 'center',
 flexDirection: 'row',
 padding: 10,
 margin: 10
 },
 imgForma: {
 height: 100,
 width: 100,
 backgroundColor: 'white'
 },
 titleView: {
 marginLeft: 50
 },
 titleText: {
 color: '#fff',
 fontSize: 25,
 fontWeight: 'bold',
 textAlign: 'center',
 },
});

On obtiens quelque chose comme ça :

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

Pratiquez !

L'objectif est d'avoir toutes les pages prêtes :

04/02/2026 07:37 17/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

 |

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

04/02/2026 07:37 19/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

 |

Last update: 18/11/2021 18:36 formations:devmobile_2 https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

https://wiki.centrale-med.fr/ginfo/ Printed on 04/02/2026 07:37

La correction sur le gitlab

https://gitlab.ginfo.centrale-marseille.fr/ginfo/formations/appli_foder

04/02/2026 07:37 21/21 Dev mobile 102 : Components, Navigation et API

Wiki GInfo - https://wiki.centrale-med.fr/ginfo/

From:
https://wiki.centrale-med.fr/ginfo/ - Wiki GInfo

Permanent link:
https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

Last update: 18/11/2021 18:36

https://wiki.centrale-med.fr/ginfo/
https://wiki.centrale-med.fr/ginfo/formations:devmobile_2

	Dev mobile 102 : Components, Navigation et API
	Prérequis
	Le projet
	Les Components
	C'est quoi un component ?
	Créer un component
	Utilisons notre component
	Un peu de pratique

	La Navigation
	De quoi on parle ?
	Créer un Navigator
	Naviguons

	Se connecter à une API Web
	Rappel des objectifs
	fetch
	Une FlatList

	Pratiquez !

