31/01/2026 18:22 1/7 Dev mobile 103 : Les formulaires et Redux

Dev mobile 103 : Les formulaires et Redux

Prérequis

Apres avoir suivi la Dev mobile 102, il vous faudra aussi rattraper |'état de I'application sur le gitlab :
https://gitlab.ginfo.centrale-marseille.fr/ginfo/formations/appli_foder

Objectifs

Dans cette formation, nous allons ajouter un formulaire, pour pouvoir laisser un commentaire sur une
session de formation via I'application. Ensuite, nous ajouterons une mémoire a notre application : elle
retiendra quels commentaires ont été laissés par |'utilisateur, pour les afficher difféeremment.

J'ai bien dit objectif, parce que je commence a préparer la formation 24h avant la premiére session.
Donc on va essayer quoi.

Les formulaires

Pour ajouter notre formulaire, on va commencer par créer un component. On crée un fichier
CommentForm. js et ony mets le code suivant :

import React from 'react';
import {View} from "react-native";

export default function commentForm (props) {

return (
<View style={{backgroundColor:'red', flex:1}}/>

Quoi ? Comment ? On crée un component mais c'est pas une classe ? On fait une fonction ?
Oui, on peut créer des components fonction. Ici, on doit, parce qu'on va utiliser un concept assez
compliqué, les Hook, et ce n'est possible que dans un component fonction.

On integre ce component dans notre CommentList, entre le header et la flatlist.

On va installer la librairie nécessaire pour les formulaires :
npm install react-hook-form

Et quelques librairies afin d'ajouter des icones Font Awesome a notre appli :

Wiki Ginfo - https://wiki.centrale-med.fr/ginfo/


https://wiki.centrale-med.fr/ginfo/formations:devmobile_2
https://gitlab.ginfo.centrale-marseille.fr/ginfo/formations/appli_foder

Last update: 19/11/2021 12:46 formations:devmobile_3 https://wiki.centrale-med.fr/ginfo/formations:devmobile_3

npm install react-native-svg fortawesome
On ajoute les imports :

import {Controller, useForm} from 'react-hook-form';
import {FontAwesomeIcon} from "@fortawesome/react-native-fontawesome";
import {faCheck} from "@fortawesome/free-solid-svg-icons";

Dans la fonction, on appelle le hook useForm. Pour faire simple : c'est lui qui va gérer notre
formulaire. On défini aussi une fonction onSubmit, qui sera appelée lors de la validation du
commentaire. C'est ici que I'on enverra le commentaire a I'API.

const {control, handleSubmit, formState: {errors}} = useForm();
const onSubmit = data => {}

Ensuite on integre dans notre component une TextInput gérée par le formulaire, et une
TouchableOpacity pour soumettre le commentaire.

<View style={styles.container}>
<Controller
control={control}
render={({ field: { onChange, onBlur, value } }) => (
<TextInput
style={styles.input}
onBlur={onBlur}
onChangeText={onChange}
value={value}
placeholder={"Laisser un commentaire"}
placeholderTextColor={'lightgrey'}
/>
)}
name="contenu"
rules={{ required: true }}
defaultValue=""
/>
<TouchableOpacity
style={styles.button}
onPress={handleSubmit (onSubmit)}

<FontAwesomeIcon icon={faCheck} color={'white'} size={30}/>
</TouchableOpacity>
</View>

En mettant les bon styles, on obtient ca :
I'image

Le code en entier:

https://wiki.centrale-med.fr/ginfo/ Printed on 31/01/2026 18:22



31/01/2026 18:22 3/7 Dev mobile 103 : Les formulaires et Redux

import React from 'react’;

import {View, TouchableOpacity, TextInput, StyleSheet} from "react-native";
import {Controller, useForm} from 'react-hook-form';

import {FontAwesomelIcon} from "@fortawesome/react-native-fontawesome";
import {faCheck} from "@fortawesome/free-solid-svg-icons";

export default function commentForm (props) {
const {control, handleSubmit, formState: {errors}} = useForm();
const onSubmit = data => {}

return (
<View style={styles.container}>
<Controller
control={control}
render={({ field: { onChange, onBlur, value } }) => (
<TextInput
style={styles.input}
onBlur={onBlur}
onChangeText={onChange}
value={value}
placeholder={"Laisser un commentaire"}
placeholderTextColor={'lightgrey'}
/>
)}
name="contenu"
rules={{ required: true }}
defaultValue=""
/>
<TouchableOpacity
style={styles.button}
onPress={handleSubmit(onSubmit)}

<FontAwesomeIcon icon={faCheck} color={'white'} size={30}/>
</TouchableOpacity>
</View>

}

const styles = StyleSheet.create({
container: {

flex: 1,
flexDirection: 'row',
marginBottom: 10,

b

input: {

flex: 4,

justifyContent: 'center’',
backgroundColor: 'white',
borderRadius: 10,

Wiki Ginfo - https://wiki.centrale-med.fr/ginfo/



Last update: 19/11/2021 12:46 formations:devmobile_3 https://wiki.centrale-med.fr/ginfo/formations:devmobile_3

marginLeft: 10,
paddingLeft: 5,
marginRight: 5,

},

button: {
flex: 1,
alignItems: 'center',
justifyContent: 'center’,
backgroundColor: '#42b649',
borderRadius: 10,
marginRight: 10,

}

Tout va maintenant se passer au niveau de la fonction onSubmit. On peut commencer par ajouter un
console.log(data)

Quand on écris un commentaire et qu'on valide, on voit apparaitre dans la console un dictionnaire
avec le contenu du commentaire.

Remarque : si on n'écris rien, la fonction onsubmit n'est pas appelée ! C'est grace au rules={ {
required : true }}, on ne veut pas envoyer a I'APl un commentaire vide.

Maintenant, on vet envoyer ce commentaire a I'API https://feedback-forma.ginfo.centrale-marseille.fr/.
La route est : /commenter/{id}. Il faut donc passer I'id de la session au component, via ses props.

Pour la requéte, attention ! C'est plus compliqué que ce qu'on a fait jusqu'a maintenant. En effet, I'API
n'accepte que des requétes de type POST sur cette route. Il faut passer le commentaire en parametre
de la requéte. Ici, on utilise fetch pour envoyer la requéte, mais on n'a pas besoin de la réponse. On
va simplement aficher le status de la réponse.

const onSubmit = data => {
let jsonD = new FormData()
jsonD.append("json", JSON.stringify(data))
let request = new Request(
"https://feedback-forma.ginfo.centrale-marseille.fr/commenter/"' +
props.session.id,
{method: 'POST', body:jsonD}
)
fetch(request).then((response) => {
console.log(response.status)

})

On a réussi a envoyer un commentaire !

Mais pour le voir apparaitre dans I'application, il faut recharger la page. On peut faire retour et revenir
sur la session, mais évidemment on veut pas laisser ¢a dans notre application.

https://wiki.centrale-med.fr/ginfo/ Printed on 31/01/2026 18:22


https://feedback-forma.ginfo.centrale-marseille.fr/

31/01/2026 18:22 5/7 Dev mobile 103 : Les formulaires et Redux

Donc crée une méthode de CommentList, qui mets isLoading = true et appelle forceUpdate,
puis on la passe dans les props du component CommentForm, qu'on appelle aprés le console. log.
Et voila, quand on valide le commentaire, la page de chargement s'affiche, puis on retrouve notre
nouveau commentaire tout en bas.

Redux

Rom a dit : “Redux c'est super compliqué, c'est pas possible que tu comprennes comment ¢a marche,
méme moi je comprends pas. Tu fait que copier les codes d'exemple en vrai”

Il a peut-étre pas si tort, mais bon.

Du coup, on veut stocker des informations dans notre application, et qu'elles soient conservées méme
quand on change de page ou quoi (c'est a dire qu'elles ne soient pas conservées au niveau du
component, mais dans un state global).

La c'est un peu technique : on va configurer un store, en utilisant des reducers. Les reducers, on les
écrit, c'est la qu'on va gérer les données enregistrées, définir les modifications qu'on peut y faire et
tout.

On crée un dossier Store, avec un dossier Reducer dedans. On crée un fichier
commentsReducer. js, avec le contenu suivant :

const initialState = {
comments:[]

}

function handleComments(state=initialState, action)({
switch (action.type) {
case 'ADD COMMENT"':
let comments = state.comments
comments.push(action.commentId)
return {
...State,
comments: comments,
}
default:
return state

}

export default handleComments;
Ca, c'est le Reducer. On va ensuite créer un fichier configureStore. js. Dedans:

import { createStore } from 'redux’;
import handleComments from "./Reducers/commentsReducer";

export default createStore(handleComments);

Wiki Ginfo - https://wiki.centrale-med.fr/ginfo/



Last update: 19/11/2021 12:46 formations:devmobile_3 https://wiki.centrale-med.fr/ginfo/formations:devmobile_3

Assez simple non ? On installe react - redux :

npm install react-redux
Dans le App. js, on importe ce Store et on entoure toute notre appli par un Provider:
import {Provider} from "react-redux";

import Store from './Store/configureStore';

<Provider store={Store}>

Dans le CommentForm, il faut importer les Hooks nécessaires : useSelector pour d'abonner au
State global, useDispatch pour pouvoir envoyer des actions au Reducer.

import {useSelector, useDispatch} from "react-redux";

const dispatch = useDispatch();
const state = useSelector(state => state);

Ensuite, dans les then qui suivent la requéte, on va créer une action et la dispatcher :

let action = {
type: 'ADD COMMENT',
commentId: data.comentId

}

dispatch(action)

Si on log le state, on voit qu'un identifiant s'ajoute dans la liste lorsqu'on ajoute un commentaire.

On va maintenant connecter notre CommentList au Store, pour afficher les commentaires publiés
par l'utilisateur d'une facon différente.

On importe connect de react- redux, on défini une fonction mapStateToProps, et on utilise la
fonction connect au moment de I'export. Maintenant, la liste des commentaires est accessible via
this.props.comments

import {connect} from "react-redux";

const mapStateToProps = (state) => {
return state

}

export default connect(mapStateToProps) (CommentList);

Maintenant, on va passer a notre CommentItem une prop isMine (un booléen), et faire en sorte qu'il
affiche nos commentaires différement (on change la couleur de fond par exemple)

https://wiki.centrale-med.fr/ginfo/ Printed on 31/01/2026 18:22



31/01/2026 18:22 717 Dev mobile 103 : Les formulaires et Redux

<CommentItem comment={item}
isMine={this.props.comments.includes(item.id.toString())}/>

Voila on a une belle appli mobile qui marche !

From:
https://wiki.centrale-med.fr/ginfo/ - Wiki GInfo

Permanent link:
https://wiki.centrale-med.fr/ginfo/formations:devmobile_3

Last update: 19/11/2021 12:46

Wiki Ginfo - https://wiki.centrale-med.fr/ginfo/


https://wiki.centrale-med.fr/ginfo/
https://wiki.centrale-med.fr/ginfo/formations:devmobile_3

	Dev mobile 103 : Les formulaires et Redux
	Prérequis
	Objectifs
	Les formulaires
	Redux


