2026/01/02 10:57 1/5 Présentation Générale

Présentation Générale
Ce TP a été préparé/testé en Juin-juillet 2018 par Dan ZHU lors de son stage de deuxieme année a
I'ECM.

Contexte : De nombreux services (Google Map, Via Michelin, Mappy,...) vous donnent, en quelques
secondes, le plus court chemin pour aller d'un point A a un point B au sein d'une carte contenant des
millions de points. De plus, cet exploit est souvent réalisé sur des "machines" pesant a peine une
centaine de grammes.

But : Le but de ce TP est de réaliser que ceci est infaisable par les méthodes "classiques" (i.e. vues en
cours), & d'étudier des pistes que cela soit réalisable avec ces contraintes de temps & de puissance.

Travail a réaliser : Pour cela, on résoudra ce probleme sur différentes cartes (contenant 100,
1000,... 30000 points), & on extrapolera les résultats aux cartes réelles.

Objectif : A |a fin de la séance, I'éléve aura une vision concréte des problémes posés par la
manipulation & le traitement de données de grande taille.

Travail a Réaliser

Il est "demandé" d'utiliser la pep8. En particulier, les noms (de variables, fonctions, ...)
doivent étre explicites. De méme, on mettra des espaces autour des opérateurs : on
écrira

i j o+

& non pas

i=j+

Q@ .

ni

ni...

Les données a traiter sont la. Les fichiers base x.csv contiennent, au format csv, les x plus grandes
villes de France avec (entre autres) latitudes & longitudes. Par exemple, la ligne

3503,14515,Port-en-Bessin-Huppain,49.350 ,-0.750 ,2308

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://www.python.org/dev/peps/pep-0008/
http://pascal.prea.perso.centrale-marseille.fr/visible/Journee_TP_mappy/

Last update: 2018/11/19 14:38 jour_tp_chemin https://wiki.centrale-med.fr/informatique/jour_tp_chemin

indique que, avec 2308 habitants, Port-en-Bessin-Huppain (code postal 14515) est la 3503me ville de
France & que ses coordonnées sont : 49.350°Nord & 0.750°Ouest

Le code

NAME "name’

LATITUDE "latitude’
LONGITUDE 'longitude’
POPULATION 'population’

file to node list(file name, r

node list
flowfile = open(file name
line flowfile:

the data = line.split(',’
node list.append({NAME: the data
LATITUDE: float(the data
LONGITUDE: float(the data
POPULATION: int(the data
flowfile.close
node list

transforme ces fichiers en une liste de dictionnaires, qui correspondent chacun a une ville.
Premiere chose a faire

A partir de ces fichiers, construire des graphes comme ceux représentés dans ce répertoire. Le fichier
Villes-x R-d.pdf correspond au graphe dont les sommets sont les x plus grandes villes de
France, deux villes étant reliées (par une aréte) si elles sont a moins de d kilomeétres I'une de I'autre.

Il est fortement conseillé d'utiliser le méme format que pour ce graphe, construit a
partir de quelques villes parmi les 500 plus grandes & représenté ici.

On remarquera que ce graphe est représenté par une liste d'adjacence, elle-méme
implémentée avec un dictionnaire, dont les clés sont des chaines de caracteres (les
noms des villes). Pour des raisons de cohérence, il est conseillé, pour les autres
structures de données que I'on implémentera, d'utiliser le méme type de dictionnaires.

G b

Il n'est pas obligatoire d'utiliser la norme L2 (mais c'est mieux).

E

Des cette étape (& pour toutes les autres), on représentera graphiquement les
résultats obtenus. Cela permettra de "vérifier" que les résultats en question sont
corrects.

B

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/02 10:57


http://pascal.prea.perso.centrale-marseille.fr/visible/Journee_TP_mappy/Images/
http://pascal.prea.perso.centrale-marseille.fr/visible/Journee_TP_mappy/Un_Graphe/mon_graphe.txt
http://pascal.prea.perso.centrale-marseille.fr/visible/Journee_TP_mappy/Un_Graphe/mon_graphe.png

2026/01/02 10:57 3/5 Présentation Générale

séparera bien cette partie graphique du reste du programme, & celle-ci s'exécutera a

@ Le dessin est juste une représentation. On ne peut rien faire a partir de lui. On
la fin du programme.

Pour cette représentation graphique, on utilisera la librairie matplotlib.

par exemple, si latitudes & longitudes sont des listes (de méme taille) de nombres (latitudes =
[x1, ..., xn] longitudes = [y1, ... yn]), le code

matplotlib
matplotlib pyplot
pyplot.scatter(latitudes, longitudes, s C ‘red', m ‘o'

pyplot.show

trace tous les points de coordonnées (xi, yi), chaque point étant représenté par un disque rouge
de "taille" 40.

Pour rajouter un trait noir entre deux points de coordonnées [x1, y1] & [x2, y2], on utilisera

pyplot.plot([x1, x2 yl, y2

Attention, c'est

pyplot.plot(/x1, x2 yl, y2
& non pas

pyplot.plot([x1, yl X2, y2

Deuxieme chose a faire

Programmez les algorithme de Dijkstra & de Roy-Floyd-Warshall & essayez-les sur les différents
graphes construits.

Il est recommandé de conserver les résultats obtenus par I'algorithme de Roy-Floyd-
Warshall, surtout pour les graphes de grande taille.

étape de l'algorithme de Roy-Floyd Warshall pour des graphes donnés dans le format

.J Pour ceux qui sont pressés, voici le code de I'algorithme de Dijkstra & de la premiere
conseillé plus haut.

Déterminez si ces algorithmes sont utilisables pour un vrai google-map.

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/jour_tp_chemin:dijjstra
https://wiki.centrale-med.fr/informatique/jour_tp_chemin:roy

Last update: 2018/11/19 14:38 jour_tp_chemin https://wiki.centrale-med.fr/informatique/jour_tp_chemin

Pour mesurer le temps d'exécution d'un programme, on utilisera :
time

beginning = time.clock

code a tester

the end = time.clock
the end - beginning

Troisieme chose a faire
Le but est maintenant d'écrire un programme capable de traiter, en un temps & espace mémoire

raisonnable, des données de tres grande taille.

L'idée de base est la méme que pour (la deuxieme étape de) I'algorithme de Roy-Floyd-Warshall : le
plus court chemin pour aller d'une ville x a une ville y est d'abord donné par un intermédiaire i
(appelé hub), puis on cherche un plus court chemin de x a i, ...

Dans l'algorithme de Roy-Floyd-Warshall, si on a n villes, I'ensemble des hubs est une matrice n x n.
Ce que I'on va faire maintenant, c'est construire un ensemble de hubs de taille (au total) O(n).

Sur un graphe de 'petite taille' (parmi ceux qui sont donnés), pour un ensemble "significatif" de villes,
tracer (simultanément) tous les chemins de Marseille (par exemple) a ces villes. Qu'observez-vous ?

Tracer ensuite (toujours simultanément) les deux premiers tiers de ces chemins. Qu'observez-vous ?

Spoiler : Vous pouvez regarder ici

Est-ce que cela s'observe aussi pour les graphes de grande taille (parmi ceux qui sont donnés) ? Pour
les vrais réseaux routiers ? Pourquoi ?

On 'rapprochera’ les graphes donnés d'un vrai réseau en les fusionnant avec ce graphe, que I'on
interprétera comme un réseau d'autoroutes.

On prendra comme ensemble des hubs associés a Marseille (par exemple) la plus grande ville dans le
deuxieme tiers de chacun de ces chemins.

Montrez qu'on peut alors obtenir, y compris sur des données de grande taille, le plus court chemin
entre deux villes.

Quatrieme chose a faire

Adaptez votre algorithme pour qu'il donne des chemins alternatifs, qu'il indique les parties
d'autoroutes & de routes 'normales’, ...

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/02 10:57


http://pascal.prea.perso.centrale-marseille.fr/visible/Journee_TP_mappy/Un_Graphe/mon_graphe_from_Marseille.png
http://pascal.prea.perso.centrale-marseille.fr/visible/Journee_TP_mappy/Un_Graphe/mon_graphe.txt

2026/01/02 10:57 5/5 Présentation Générale

Cinquieme chose a faire

Quels sont les problemes résiduels ? Comment les traiter ?

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/jour_tp_chemin

Last update: 2018/11/19 14:38

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/jour_tp_chemin

	[Présentation Générale]
	[Présentation Générale]
	Présentation Générale

	Travail à Réaliser
	Première chose à faire
	Deuxième chose à faire
	Troisième chose à faire
	Quatrième chose à faire
	Cinquième chose à faire



