
2026/02/04 07:41 1/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

1. Persistance des données

1.1 généralités

Les données sont une composante fondamentale de de tout projet informatique.
Elles correspondent aux informations qui doivent être conservées d'une session à l'autre.

Exemples :
Les données liées à l'utilisateur (données personnelles, sauvegardes,…)
Les données de l'entreprise:

données comptables
ventes
achats
employés
stocks
production
etc..

Bases d'information:
Documents en ligne
Services (trajets SNCF, articles commerciaux à vendre, données
météo, articles de presse…)

Échanges et communication
index web (moteurs de recherche)
graphes de liens et messages (réseaux sociaux)
…

Donnée informatique

Une données informatique est un élément d'information ayant subi un encodage numérique
Consultable/manipulable/échangeable par des programmes informatiques
Possibilité de la conserver sur un support de stockage numérique (CD-ROM, dique dur,
SSD, …)

Les informations peuvent être stockés dans un fichier (ex : fichier csv).
La plupart du temps, on utilisera des bases de données :

plus robuste
plus sécurisé
plus rapide

Serveur de bases des données

En informatique, une requête (en anglais query) est une demande de consultation, effectuée par un
programme client à l’attention d’un programme serveur.

Le programme client représente l’utilisateur, il s’agit du programme qui enregistre la demande

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

de l’utilisateur, la transmet au serveur, puis met en forme visuellement la réponse du serveur.
Les données sont centralisées au niveau du serveur, chargé de la gestion, de la manipulation
et du stockage des données.Il traite la requête, consulte les données et transmet le résultat au
client.

La requête peut être une simple référence vers un fichier, ou être l’expression d’une recherche plus
spécifique (consultation de certaines fiches d’un fichier, croisement d’information (entre plusieurs
fichiers), etc…). Dans ce cas, il est nécessaire d’utiliser un langage de requête (le plus souvent SQL).

Lors d’une consultation de type lecture/recherche, il y a souvent plusieurs réponses qui
correspondent à la demande. Le résultat d’une requête prend donc la forme d’un ensemble de
réponses. Ces réponses sont éventuellement classées, selon la valeur d’un certain identifiant, ou
selon le degré de pertinence.

Exemples :

requêtes http : demande de consultation d’une page web (= référence vers un
fichier)
moteur de recherche : recherche de pages contenant les mots-clés spécifiés
bases de données : utilisation d’un langage de requête :

SELECT *
FROM Eleves
WHERE NOM = 'Dugenou'

1.2. La mémoire cache

Rappel sur les fichiers

La mémoire secondaire est organisée sous forme de pages (ou secteurs : blocs de 512 octets
environ)
Les programmes ne peuvent pas directement écrire sur les secteurs. Le système d'exploitation
assure la gestion la gestion de l'accès au disque via les fichiers
Un fichier est une entité logique représentant un ensemble de pages de la mémoire secondaire
Il est désigné par son descripteur (nom, chemin d'accès, droits,…)

https://wiki.centrale-med.fr/informatique/_detail/public:std-3:cm1:fig1.png?id=public%3Aappro-s7%3Acm3
https://wiki.centrale-med.fr/informatique/public:std-3:cm3:syntaxe_sql

2026/02/04 07:41 3/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Lecture

ouverture d'un fichier = initialisation d'un descripteur de fichier f:

f = open("/chemin/vers/mon_fichier", "r")

* f est un objet qui implémente un flux de données. * Un flux de données est structure d'accès :

sans adressage
les données sont lues dans l'ordre dans lequel elles ont été écrites par le serveur

* On parle d'accès séquentiel aux données

s = f.readline()

L'opération de lecture dépile l'élément situé en tête de flux (dans la mémoire cache) et le
retourne à l'utilisateur

SCHEMA : TODO

* Le système d'exploitation se charge de gérer la mémoire cache :

les donnée sont lues en fonction des demandes du programme
typiquement le système charge plusieurs pages en avance dans la mémoire cache

Ecriture

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie_persistance_fichiers.png?id=public%3Aappro-s7%3Acm3

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

g = open("/chemin/vers/mon_fichier", "w")

autres possibilités :

Lecture/écriture : "rw"
Ajout : "a"

g.write(s)

Le système d'exploitation modifie le cache sans modifier directement/immédiatement le fichier
L'écriture dans la mémoire secondaire est garanties lors de la fermeture :

g.close()

Pour forcer l'écriture sans fermer le fichier, on on effectue un "vidage" du cache dans la
mémoire secondaire

g.flush()

Accès aux bases de données

import sqlite3
db = sqlite3.connect("/chemin/vers/mabase.db")

Ici l'objet db ouvre une communication (un "socket") avec un programme de gestion de bases
de données (ici l'application sqlite3).

Le programme n'est donc plus en communication directe avec le système d'exploitation
mais avec une application tierce
C'est maintenant sqlite3 qui gère le flux de données.

Le curseur est l'objet qui gère l'accès séquentiel aux données:

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie_persistance_socket_.png?id=public%3Aappro-s7%3Acm3

2026/02/04 07:41 5/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

c = db.cursor()

Le programme sqlite3 exécute la requête et génère un flux de données:

c.execute("SELECT * FROM MaTable")

Lecture de la première réponse (du premier tuple) du flux:

t = c.fetchone()

Accès en écriture:

c.execute("INSERT INTO MaTable VALUES (v1, v2, v3)")

Les modifications sont conservées dans la mémoire cache de sqlite. Néanmoins, pour s'assurer
d'un enregistrement effectif en mémoire secondaire, il faut effectuer un commit (pour forcer
l'écriture)

db.commit()

Appariement (Mapping) Objet/Données

Un appariement (Mapping) est une couche d'abstraction logicielle qui permet :
de manipuler les données de la base données de manière plus conviviale et intuitive,
essentiellement en faisant correspondre les tuples (enregistrements) de la base de
données avec des variables du programme

correspondance objets/données
On parle aussi d'interface objets/données

En particulier, l'utilisateur n'a pas besoin d'écrire de requêtes SQL pour modifier le contenu de
la base : le SQL est "caché"…
Le schéma vu par l'utilisateur peut être différent du schéma de la base de données

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:07.png?id=public%3Aappro-s7%3Acm3

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Voir aussi : transparent_persistence.html

Exemples

"Vues" d'une base de données : tables virtuelles correspondant à des requêtes pré-définies –>
en RAM
Mapping objet/Relationnel (ORM – Object-Relational Mapping) :

mise en correspondance table/classe
+ ajout de getters/setters
patron de conception DAO (Data Access Object)

Approche “CRUD”: les requêtes se réduisent à quatre grandes familles d'opérations:
Création (Create) : ajout de nouvelles données dans la base
Lecture/recherche (Read) : consulation du contenu de la base
Mise à jour (Update) : changement du contenu existant
Suppression (Delete) : suppression des données obsolètes

Analyse de données :
Mise en forme hiérarchique des données :

Dimensions (indexation multiple hiérarchique)
Agrégation multi-critères (tableaux croisés dynamiques, cubes de données etc.)

Visualisation

Dans les deux premiers cas que nous avons vus, la gestion de la mémoire cache est
déléguée à des programmes tiers:

Les système d'exploitation (pour la gestion des fichiers)
Le gestionnaire de BD (requêtes vers une BD)

Dans le cas du mapping Objet/Relationnel, la couche de persistance gère le
chargement en mémoire des données de la base.

Elle joue le même rôle que la mémoire cache:

en maintenant en mémoire l'état des objets modifiés par l'utilisateur
en chargeant de manière parcimonieuse le contenu de la base (seuls les
données réellement utilisées doivent être chargées en mémoire)

1.3 De la conception à la réalisation

Principe général : Retrouver le programme dans l'état dans lequel on l'a laissé
lorsqu'on l'a précédemment quitté:

Les variables et objets manipulé sont régulièrement sauvegardés
Pour plus d'efficacité, le fichier de sauvegarde est une base de données
Au niveau de la conception du programme, on doit distinguer les données
persistances des données non-persistantes
Mise en correspondance et synchronisation entre les donnée du programme et

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=173bb2&media=https%3A%2F%2Fwww.service-architecture.com%2Farticles%2Fobject-relational-mapping%2Ftransparent_persistence.html
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=bba6b6&media=https%3A%2F%2Fwww.service-architecture.com%2Farticles%2Fobject-relational-mapping%2Findex.html
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=782df2&media=http%3A%2F%2Fcyrille-herby.developpez.com%2Ftutoriels%2Fjava%2Fmapper-sa-base-donnees-avec-pattern-dao%2F

2026/02/04 07:41 7/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

la base de données
Maintien de la cohésion assuré par la mémoire cache (interface entre application
et SGBD)

Les données persistantes sont conservées dans une base de données relationnelle dont le schéma est
établi au cours de l'étape de modélisation.

Conception initiale sous forme d'un modèle Entité/Association (cours de première année)
Passage au modèle relationnel (cours de première année)
Modélisation UML

Modèle Entité/Association

Passage au modèle Relationnel

Enseignant(e-mail-ens, nom, prénom, tel)
UE(code_UE, intitulé, semestre, nb_crédits, e-mail-ens)
Séance(id_séance, code_UE, e-mail-ens, type, salle, date, heure)
Présence(e-mail-eleve, id_seance)
Elève(e-mail-eleve, nom, prénom, tel)

https://wiki.centrale-med.fr/informatique/public:std-3:cm2:conception_de_bases_de_donnees:3.1.1_modele_ensembliste
https://wiki.centrale-med.fr/informatique/public:std-3:cm2:conception_de_bases_de_donnees:3.1.2_traduction_vers_le_modele_relationnel
https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:08.png?id=public%3Aappro-s7%3Acm3

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Examen(code_UE, e-mail-eleve, date, heure, note)

Création de tables SQL

 CREATE TABLE Enseignant (
 e_mail_ens VARCHAR(30) NOT NULL,
 nom VARCHAR(30) NOT NULL,
 prénom VARCHAR(30) NOT NULL,
 tel VARCHAR(12),
 PRIMARY KEY (e_mail_ens));

 CREATE TABLE UE (
 code_UE VARCHAR(30) NOT NULL,
 intitulé VARCHAR(30) NOT NULL,
 semestre INTEGER NOT NULL,
 nb_crédits INTEGER NOT NULL,
 e_mail_ens VARCHAR(30) NOT NULL,
 PRIMARY KEY (code_UE),
 FOREIGN KEY (e_mail_ens) REFERENCES Enseignant);

etc…

Passage au modèle UML

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie_uml.png?id=public%3Aappro-s7%3Acm3

2026/02/04 07:41 9/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Réalisation en Python

Pour chaque Entité une classe distincte.

class Enseignant:
 def __init__(self, e_mail_ens , nom, prénom, tel):
 self.e_mail_ens = e_mail_ens
 self.nom = nom
 self.prénom = prénom
 self.tel = tel
 self.responsabilités = set()
 self.séances = set()

 def ajoute_seance(self, séance):
 self.séances.add(séance)

 def ajoute_responsabilité(self, UE):
 self.responsabilités.add(UE)

etc…

Mise en œuvre de la persistance : patron DAO

Un DAO (Data Access Object) est une classe qui réalise l'interface entre une classe d'objets

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie_uml_2.png?id=public%3Aappro-s7%3Acm3
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=782df2&media=http%3A%2F%2Fcyrille-herby.developpez.com%2Ftutoriels%2Fjava%2Fmapper-sa-base-donnees-avec-pattern-dao%2F

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

persistants et la base de données.

Une classe DAO permet de mettre en œuvre les quatre opérations de base :
Create
Read
Update
Delete

Il existe autant de classes DAO que de classes persistantes

Dans l'exemple considéré, on doit donc avoir les six classes suivantes:

Enseignant_DAO
UE_DAO
Séance_DAO
Elève_DAO
Examen_DAO

Il est possible de mettre en œuvre un patron de conception Factory permettant de
gérer les différentes interfaces au sein d'une même classe en évitant la répétition de
code

En Python:

class Enseignant_DAO:
 def __init__(self, db_name):
 self.db = sqlite3.connect(db_name)
 def create_enseignant(self, enseignant):
 ...
 def get_enseignant_by_id(self, id_enseignant): # Read
 ...
 def update_enseignant(self, enseignant):
 ...
 def delete_enseignant(self, enseignant):
 ...

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie_uml_dao.png?id=public%3Aappro-s7%3Acm3

2026/02/04 07:41 11/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Remarque : l'opération de lecture get_enseignant_by_id effectue les opérations
suivantes:

extraction des données de l'enseignant dans la table Enseignant:

c.execute("SELECT * FROM Enseignant WHERE e_mail_ens = ?",
(id_enseignant,))

initialisation un objet enseignant (à l'aide du constructeur de la classe
Enseignant)
recherche des séances programmées dans la table Séances:

c.execute("SELECT id_séance FROM Séance WHERE e_mail_ens = ?",
(id_enseignant,))

pour chaque id_séance trouvé,
initialise un objet de type Séance avec la méthode get_séance_by_id
de la classe Séance_DAO
ajoute la séance dans l'ensemble séances avec la méthode
ajoute_seance de l'objet enseignant

recherche des responsabilités d'UE dans la table UE:

c.execute("SELECT code_UE FROM UE WHERE e_mail_ens = ?",
(id_enseignant,))

pour chaque code_UE trouvé,
initialise un objet de type UE avec la méthode get_UE_by_id de la classe
UE_DAO
ajoute l'UE dans l'ensemble responsabilités avec la méthode
ajoute_UE de l'objet enseignant

retourne l'objet enseignant

Problème : avec le patron DAO, l'existence de relations many-to-many a pour effet de
charger l'intégralité des tables concernées en mémoire lors de la lecture d'un objet
unique!!

Exemple : relation many-to-many entre Elève et Séance :

La méthode get_séance_by_id fait appel à get_eleve_by_id pour établir la
liste de présence
La méthode get_eleve_by_id fait appel à get_séance_by_id pour établir la
liste des séances auxquelles l'élève a assisté
etc….

Il faut donc prévoir de ne charger qu'une partie des informations, celle qui est
réellement utile au programme (inutile de charger l'emploi du temps de chaque élève
lorsqu'on s'intéresse à la liste de présence d'une séance particulière).

Avec le patron DAO, il faut gérer au cas par cas
Les Gestionnaires de persistance ORM (django, Pony ORM) permettent de gérer
le chargement des données "à la demande", à la manière de la mémoire cache.

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Voir aussi : dao-et-orm-sont-ils-compatibles

Un gestionnaire de persistance : la librairie Pony ORM

Pony ORM

voir notebook (nbviewer)

2. Le patron MVC (Modèle-Vue-Contrôleur)

Le patron de conception "Modèle - Vue - Contrôleur" est destiné à faciliter le développement
d'interfaces graphiques.

Une Interface graphique est constituée essentiellement de deux modules :

Le "front-end" (la "devanture"), qui est la partie du programme visible pour l'utilisateur et avec
laquelle l'utilisateur peut interagir à l'aide de menus, de boutons et de formulaires…
Le "back-end" (l'"arrière-boutique"), qui correspond aux rouages invisible à l'utilisateur,
permettant au programme de réaliser la tâche pour laquelle il a été conçu.

Pour développer un tel programme, on le divise généralement en trois modules appelés
respectivement:

le Modèle
la Vue
le Contrôleur

Le Modèle

Le modèle est la partie du programme qui manipule et met à jour les informations qui doivent être
conservées d'une session à l'autre. Il s'agit de l'ensemble des variables et objets qui sont créés et mis
à jour par l'utilisateur lorsqu'il interagit avec le programme.

La Vue

La Vue est la partie du programme qui gère la mise en page, la disposition des informations, des
boutons et des formulaires, l'organisation et la visibilité des différentes fenêtres du programme s'il y
en a.

La Vue fait appel au Contrôleur à chaque fois que l'utilisateur effectue une action (saisie
d'information, pointage de souris, sélection de menu, activation d'un bouton etc…)
La Vue fait appel au Modèle pour afficher en permanence un contenu actualisé par les actions
de l'utilisateur.

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=383d1f&media=https%3A%2F%2Fblog.zenika.com%2F2009%2F07%2F27%2Fdao-et-orm-sont-ils-compatibles%2F
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=318d40&media=https%3A%2F%2Fdocs.ponyorm.com%2Ffirststeps.html
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=455a48&media=https%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fpony%2520ORM-Enseignant.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=d1b3e0&media=https%3A%2F%2Fnbviewer.jupyter.org%2Furls%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fpony%2520ORM-Enseignant.ipynb

2026/02/04 07:41 13/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Le Contrôleur

Le contrôleur est la partie du programme qui gère les actions de l'utilisateur. Chacune des actions
proposées dans la vue est implémentée dans le contrôleur sous la forme d'une fonction.

Le contrôleur fait appel au Modèle lorsque l'action modifie les variables et objets manipulés par
le programme.

Voir aussi

3. Développement Web

Le Web est basé sur trois piliers :

Les liens hypertextes sur lesquels on peut cliquer et leur protocole (HTTP)
le système d'adresses (URL)
le langage de construction des pages (HTML)

Le Web englobe les sites qui peuvent être consultés dans un navigateur, et n'est
qu'une des briques de l'Internet
Parmi les autres :

le courrier électronique
les applications mobiles
etc.

(source:Libération du 19/01/2011)

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:09.png?id=public%3Aappro-s7%3Acm3
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=d45e88&media=https%3A%2F%2Fopenclassrooms.com%2Ffr%2Fcourses%2F1871271-developpez-votre-site-web-avec-le-framework-django%2F1871426-le-fonctionnement-de-django#/id/r-1871371
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=1409e6&media=https%3A%2F%2Fwww.liberation.fr%2Fecrans%2F2011%2F01%2F19%2Fje-suis-toujours-inquiet-pour-le-web_956620

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

3.1 Généralités

Client/Serveur

url = adresse IP + /chemin/vers/fichier
réponse = fichier (lu sur le DD du serveur)
Le client gère la mise en page.

HTML + CSS

côté client :
construction de l'arbre DOM ⇒ bloc = objet
affichage (flux)

Pages dynamiques

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:01.png?id=public%3Aappro-s7%3Acm3
https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:02.png?id=public%3Aappro-s7%3Acm3

2026/02/04 07:41 15/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

côté client :
modification du DOM selon les événements produits par l'utilisateur

Web dynamique

Principe général : consultation/mise à jour à distance d'une base de données.

CRUD : Create / Read / Update / Delete
réponse = données mises en forme au niveau du serveur

Remarque : 3 langages sont nécessaires pour réaliser ce schéma:

Un langage d'édition de pages Web (interprété côté client):
en général langage HTML (ou HTML + CSS)
agrémenté de différentes librairies de mise en forme:

Bootstrap
Materialize

Les seuls langages compréhensibles pour le navigateur sont HTML et CSS
et Javascript

Un langage de développement (interprété côté serveur)
Le choix est vaste (n'importe quel langage de programmation)

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:03.png?id=public%3Aappro-s7%3Acm3
https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:04.png?id=public%3Aappro-s7%3Acm3
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=789e9a&media=https%3A%2F%2Fopenclassrooms.com%2Ffr%2Fcourses%2F1885491-prenez-en-main-bootstrap
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=51b8b2&media=https%3A%2F%2Fopenclassrooms.com%2Ffr%2Fcourses%2F3936801-composez-des-interfaces-utilisateurs-en-material-design%2F4392371-utilisez-le-framework-materialize-css

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Les plus courants sont (par ordre de popularité):
PHP
Java (avec la librairie Spring MVC)
Python (avec la librairie Django)
Javascript (librairie Node.js)
etc.

Un langage de requêtes (interprété côté serveur):
pour communiquer avec la base de données et enregistrer les mise à jour
Le SQL dans 90% des cas
Mais d'autres alternatives sont possibles (NoSQL): MongoDB, etc…

3.2 HTML

HTML = "Hypertext Markup Language"
But de ce langage : produire des documents consultables à distance par de navigateurs Web
Un système de balises ("Markups") permet de décrire la mise en forme du document
Possibilité de définir des liens hypertexte : chaque lien permet d'accéder à de nouveaux
documents
Possibilité de définir des formulaires qui permettent à l'utilisateur d'envoyer des informations
vers le serveur

Un document HTML contient deux parties :

L'en-tête, qui contient des contient des informations relatives à l'auteur et au contenu du
document

Balise <HEAD>
Le corps, qui contient le texte et les médias à afficher, avec des indications de mise en page

Balise <BODY>

Structure d'une page en HTML 5

2026/02/04 07:41 17/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

De nombreuses ressources web sont disponibles pour apprendre le HTML, voir par
exemple html

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:06.png?id=public%3Aappro-s7%3Acm3
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=4ad092&media=https%3A%2F%2Fwww.w3schools.com%2Fhtml%2F

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Exemple

emmanuel.dauce.free.fr

Aide-mémoire

En-tête:
<head> . . . </head>
<meta http−equiv="Content−Type" content="text/html;
charset=utf−8" />
<title> . . . </title>
<link rel="stylesheet" href="style.css" type="text/css"
/>

Corps:
Bloc:

<body> . . . </body>
<p> . . . </p>
<h1> . . . </h1>, <h6> . . . </h6>
<div> . . . </div>

Flux:

<hr />
 . . . , . . .
. . .

Listes:

<dl><dt> . . . </dt><dd> . . . </dd> . . . </dl>

Tables:
<table> . . . </table>
. . .

<tr> . . . </tr>
<th> . . . </th>
<td> . . . </td>

Images:

Liens et ancres:
 . . .
<baliseid="toto"> . . . </balise>
 . . .

Attributs communs à toutes les balises:
style
class
id

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=70a534&media=http%3A%2F%2Femmanuel.dauce.free.fr
http://www.cnrs.fr/

2026/02/04 07:41 19/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

3.3 CSS

voir :

Débuter avec les feuilles de style
CSS Zen Garden:

html
css

3.4 Transfert de données

Transmission de données "en clair"

Variables GET :

Les variables sont inscrites dans l'URL transmise au serveur:

 http://mon.adresse.com/mon_site.php?nom=Pignon&prenom=Francois
 A D R E S S E RESSOURCE V A R I A B L E S

Le serveur exécute le script (php, python, java, …), c'est à dire :

traite les variables
exécute des opérations de lecture/écriture
transmet un contenu au client (en général html mais aussi xml ou json…)

Transmission de données par formulaire

Variables POST (n'apparaissent pas dans l'URL)

utilisation de Formulaires HTML :
le fichier cible est défini comme attribut du formulaire :

<FORM method="post" action="cible.php">
 ...
</FORM>

les balises INPUT définissent les variables à transmettre:

<INPUT type="text" name="var1" />

l'INPUT de type submit lance la requête : la page cible est chargée et remplace la page courante:

<INPUT type="submit" value="Envoyer" />

https://www.w3.org/Style/Examples/011/firstcss.fr.html
http://www.csszengarden.com/tr/francais/
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=324dfa&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Findex.html
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8e22d9&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fstyle.css
http://december.com/html/4/element/form.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/input.html

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Exemple

formulaire.html :

<form action = "bonjour.php" method ="post">
Votre nom : <input type="text" name="nom"/>

Votre prénom : <input type="text" name="prenom"/>

<input type="submit" value="Envoyer">
</form>

bonjour.php :

echo "Bonjour, ".$_POST["prenom"]." ".$_POST["nom"]." !!!";

Aide-mémoire formulaires

< f o r m m e t h o d = " p o s t " a c t i o n = " s c r i p t . p h p "
enctype="multipart/form−data">

…
</form>

(enctype peut être omis, il vaut alors application/x−www−form−urlencoded).

<fieldset> . . . </fieldset>
<legend> . . . </legend>
. . .
<input type="text" name="nom" value="défaut" maxlength="42"
/>
<input type="password" name="nom" value="défaut"
maxlength="42" />
<input type="checkbox" name="nom[]" value="valeur"
checked="checked" />
<input type="radio" name="nom" value="valeur"
checked="checked" />
<input type="file" name="nom" />
<input type="hidden" name="nom" value="valeur" />
<input type="reset" value="étiquette" />
<input type="submit" value="étiquette" />
<textarea name="nom" cols ="80" rows="5"> . . . </textarea>
<select name="nom">

<option value="valeur1"> . . . </option>
<option value="valeur2" selected="selected"> . . . </option>

</select>

3.5 Conservation des données

Les informations fournies par l'utilisateur peuvent être stockés dans un fichier (ex : fichier csv).
La plupart du temps, on utilisera des bases de données :

http://december.com/html/4/element/form.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/br.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/br.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/form.html

2026/02/04 07:41 21/22 1. Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

plus robuste
plus sécurisé
plus rapide

Le web dynamique repose sur :
la mise à jour en continu d'informations
gérées par une base de données
tout se passe côté serveur

Mise en œuvre :
PHP
Python + django
Java + Hibernate + Spring MVC

Le patron MVC est devenu la norme pour le développement d'applications Web.
On pourra prendre exemple sur l'environnement de développement Django pour
la mise en œuvre : 1871426-le-fonctionnement-de-django

3.6 Interfaces Mixtes

Seule une partie des contenus est mise à jour lors d'une action de l'utilisateur
Évite de recharger les pages à chaque action de l'utilisateur

JQuery + AJAX

apprendre-et-comprendre-jquery-3-3
ajax

Exemples :

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=2cfeb7&media=http%3A%2F%2Fapprendre-python.com%2Fpage-django-introduction-python
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=201591&media=https%3A%2F%2Fwww.jmdoudoux.fr%2Fjava%2Fdej%2Fchap-hibernate.htm
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=2c7760&media=https%3A%2F%2Fwww.jmdoudoux.fr%2Fjava%2Fdej%2Fchap-spring.htm
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=d45e88&media=https%3A%2F%2Fopenclassrooms.com%2Ffr%2Fcourses%2F1871271-developpez-votre-site-web-avec-le-framework-django%2F1871426-le-fonctionnement-de-django
https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:05.png?id=public%3Aappro-s7%3Acm3
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=b6eb70&media=http%3A%2F%2Fbabylon-design.com%2Fapprendre-et-comprendre-jquery-3-3
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=95c393&media=http%3A%2F%2Fapi.jquery.com%2Fcategory%2Fajax

Last update: 2020/12/01 12:17 public:appro-s7:cm3 https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

$.ajax({
 type: "POST",
 url: "test.html",
 success:
 function(retour){
 alert("Données retournées : " + retour);
 }
});

Requête sur un lien:

$("a.test").click(function() {
 $.ajax({
 type: "POST",
 url: $(this).attr("href"),
 success: function(retour){
 $("#recipient").empty().append(retour);
 }
 });
 return false;
});

Requête sur un formulaire:

$("form.test").submit(function() {
s = $(this).serialize();
$.ajax({
 type: "POST",
 data: s,
 url: $(this).attr("action"),
 success: function(retour){
 $("#recipient").empty().append(retour);
 }
 });
return false;
 });

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

Last update: 2020/12/01 12:17

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:cm3

	[1. Persistance des données]
	1. Persistance des données
	1.1 généralités
	Donnée informatique
	Serveur de bases des données

	1.2. La mémoire cache
	Rappel sur les fichiers
	Lecture
	Ecriture
	Accès aux bases de données
	Appariement (Mapping) Objet/Données
	Exemples

	1.3 De la conception à la réalisation
	Modèle Entité/Association
	Passage au modèle Relationnel
	Création de tables SQL
	Passage au modèle UML
	Réalisation en Python
	Mise en œuvre de la persistance : patron DAO
	En Python:

	Un gestionnaire de persistance : la librairie Pony ORM

	2. Le patron MVC (Modèle-Vue-Contrôleur)
	Le Modèle
	La Vue
	Le Contrôleur

	3. Développement Web
	3.1 Généralités
	Client/Serveur
	HTML + CSS
	Pages dynamiques
	Web dynamique

	3.2 HTML
	Structure d'une page en HTML 5
	Exemple

	3.3 CSS
	3.4 Transfert de données
	Transmission de données "en clair"
	Transmission de données par formulaire
	Exemple

	3.5 Conservation des données
	3.6 Interfaces Mixtes
	JQuery + AJAX

