
2025/12/30 20:22 1/10 Les Pandas, les Poneys et la Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Les Pandas, les Poneys et la Persistance des données

Ici nous apprenons à utiliser plusieurs librairies de manipulation et de mise en forme des données.

Liens utiles :

Notebook à partir de PyCharm :
https://www.jetbrains.com/help/pycharm/using-ipython-notebook-with-product.html

Pandas :
http://www.python-simple.com/python-pandas/panda-intro.php

Pony :
https://docs.ponyorm.com/firststeps.html

Pour installer les librairies pandas et pony :

$ pip3 install pandas

$ pip3 install pony

Les notebooks Jupyter

Ce travail sera réalisé à l'aide de "notebooks" fonctionnant sur l'interpréteur "jupyter". Les notebooks
permettent d'écrire et d'exécuter des scripts python à l'aide d'un simple navigateur web. Les résultats
d'exécution sont conservés et peuvent être retrouvés d'une session à l'autre.

Si vous êtes sous Windows ou Mac, utilisez l'environnement des notebooks fourni par Anaconda

Sur un environnement Unix, Ouvrez un terminal dans votre dossier de travail et tapez :

$ jupyter-notebook

Ceci ouvre un onglet de l'interpréteur jupyter dans votre navigateur.

Créez un notebook vierge via le menu new –> python 3
Ou bien cliquez sur le notebook sur lequel vous souhaitez travailler.

Pour utiliser un notebook, voir :

1. What is the Jupyter notebook?
2. Notebook basics
3. Running code
4. Working with Markdown cells

Une vidéo en anglais

https://www.jetbrains.com/help/pycharm/using-ipython-notebook-with-product.html
http://www.python-simple.com/python-pandas/panda-intro.php
https://docs.ponyorm.com/firststeps.html
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=0c07fe&media=http%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fjupyter%2Fnotebook%2Fblob%2Fmaster%2Fdocs%2Fsource%2Fexamples%2FNotebook%2FWhat%2520is%2520the%2520Jupyter%2520Notebook.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=543cc5&media=http%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fjupyter%2Fnotebook%2Fblob%2Fmaster%2Fdocs%2Fsource%2Fexamples%2FNotebook%2FNotebook%2520Basics.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a07091&media=http%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fjupyter%2Fnotebook%2Fblob%2Fmaster%2Fdocs%2Fsource%2Fexamples%2FNotebook%2FRunning%2520Code.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=7f1b41&media=http%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fjupyter%2Fnotebook%2Fblob%2Fmaster%2Fdocs%2Fsource%2Fexamples%2FNotebook%2FWorking%2520With%2520Markdown%2520Cells.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a54bda&media=https%3A%2F%2Fwww.youtube.com%2Fembed%2FlmoNmY-cmSI

Last update: 2020/11/24 21:35 public:appro-s7:ta2 https://wiki.centrale-med.fr/informatique/public:appro-s7:ta2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/30 20:22

Chargement des données avec Pandas

L'utilisation de données structurées dans un programme Python nécessite de faire appel à des
librairies spécialisées. Nous utiliserons ici la librairie pandas qui sert à la mise en forme et à l'analyse
des données.

import numpy as np
import matplotlib.pyplot as plt
import pandas

On considère une série d’enregistrements concernant des ventes réalisées par un exportateur de
véhicules miniatures. Pour chaque vente, il entre dans son registre de nombreuses informations :

nom de la société cliente
nom et prénom du contact, adresse, téléphone
nombre d'unités vendues
prix de vente
etc…

Ces informations sont stockées dans un fichier au format ‘csv’ (comma separated values) :
ventes_new.csv. Téléchargez ce fichier et copiez-le dans votre répertoire de travail.

Dans un premier temps, regardez son contenu avec un editeur de texte (geany, gedit ou autre…).
La première ligne contient les noms des attributs (NUM_COMMANDE, QUANTITE,…). Les ligne suivantes
contiennent les valeurs d’attributs correspondant à une vente donnée. En tout plus de 2000 ventes
sont répertoriées dans ce fichier.

Ouvrez-le maintenant à l’aide d’un tableur (par exemple localc). Les données sont maintenant
“rangées” en lignes et colonnes pour faciliter la lecture.

Déplacez le fichier ventes_new.csv dans votre répertoire de travail.

Lecture des données

Les données sont au format csv, on utilise:

pandas.read_csv. Voir dataframes pandas. Pandas permet également de lire les données au
format xls et xlsx (Excel).

with open('ventes_new.csv', encoding='utf-8') as f:
 data = pandas.read_csv(f)
print(data)

avec data une structure de données de type DataFrame

Testez les commandes suivantes :

print(len(data))

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=305db6&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fventes_new.csv
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=b6a56a&media=http%3A%2F%2Fwww.xavierdupre.fr%2Fapp%2Fensae_teaching_cs%2Fhelpsphinx%2Fnotebooks%2Ftd2a_cenonce_session_1.html#dataframe-pandas

2025/12/30 20:22 3/10 Les Pandas, les Poneys et la Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

print(data.columns)

Syntaxe de type dictionnaire :

print(data["VILLE"])

print(data[["VILLE", "PAYS"]])

Autre syntaxe :

print(data.VILLE)

print(data.VILLE.head(10))

PS : Ça marche aussi avec la syntaxe "dictionnaire":

print(data["VILLE"].head(10))

pour afficher les lignes

Tout tableau de données possède un index:

print(data.index)

(il s'agit ici d'une indexation automatique par les entiers)

Les données peuvent être accédées par leur index:

print(data.loc[0])

Modifier les données

Les prix augmentent de 1 euro :

data.PRIX_UNITAIRE += 1
data.MONTANT = data.PRIX_UNITAIRE
data.MONTANT *= data.QUANTITE
print(data.MONTANT)

Sélectionner les données

selection = data[data.MONTANT > 6000]

l'objet selection se comporte comme un nouveau dataframe ne contenant que les entrées
respectant le critère de sélection.

Last update: 2020/11/24 21:35 public:appro-s7:ta2 https://wiki.centrale-med.fr/informatique/public:appro-s7:ta2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/30 20:22

Pour faciliter l'interprétation du résultat, on n'affiche le résulat que sur un sous-ensemble d'attributs:

print(selection[["MONTANT","DATE_COMMANDE","VILLE","PAYS","NOM_CONTACT","PRE
NOM_CONTACT"]])

Sélection multi-critères :

selection = data[(data.MONTANT > 6000) & (data.PAYS == 'France')]
print(selection[["MONTANT","DATE_COMMANDE","VILLE","PAYS","NOM_CONTACT","PRE
NOM_CONTACT"]])

Organiser et transformer les données : Pony ORM

La librairie Pony ORM est un gestionnaire de persistance qui permet la mise en correspondance entre
les objets d'un programme et les valeurs d'une base de données, pour assurer leur conservation
d'une session à l'autre.

Pony effectue toutes les opérations de sauvegarde de manière transparente. La création et la mise à
jour des objets persistants s'accompagne automatiquement d'opérations de lecture/écriture vers la
base de donnée. Les données sont donc conservées sans appel explicite à des requêtes SQL.

Initialisation

from pony import orm

db = orm.Database()

Création du schéma de données

Nous définissons ici trois schémas de classes correspondant aux ensembles d'entités Client,
Commande et Produit.

Client(id_client, téléphone, ville, pays)
Commande(num_commande, quantité, montant, mois, année, id_client, code_produit)
Produit(code_produit, type_produit, prix_unitaire)

Les clés étrangères de la table des commande définissent deux relations de un à plusieurs :

une relation de un à plusieurs entre un produit et des commandes,
et une relation de un à plusieurs entre un client et des commandes.

Dans un modèle ORM, les relations de un à plusieurs se traduisent par des attributs de type liste ou
ensemble :

A un client correspond un ensemble de commandes
A un produit correspond un ensemble de commandes
A une commande correspond un client et un produit

2025/12/30 20:22 5/10 Les Pandas, les Poneys et la Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Classe Client

Les classes sont définies ici comme des schémas de données.

La classe Client hérite de la classe générique Entity. Les attributs des objets obéissent à une
définition parmi quatre définitions possibles :

attribut clé primaire : PrimaryKey
attribut requis (la valeur doit être renseignée) : Required
attribut facultatif: Optional
relation de un à plusieurs : Set

class Client(db.Entity):
 id_client = orm.PrimaryKey(str)
 telephone = orm.Required(str)
 ville = orm.Required(str)
 pays = orm.Required(str)
 achats = orm.Set('Commande')

Classe Produit

class Produit(db.Entity):
 code_produit = orm.PrimaryKey(str)
 type_produit = orm.Required(str)
 prix_unitaire = orm.Required(float)
 ventes = orm.Set('Commande')

Classe Commande

Dans la classe Commande, il n'y a pas de clé étrangère (comme dans le modèle relationnel) mais :

un attribut de type Client qui lie la commande au client qui a effectié la commande
un attribut de type Produit qui lie la commande au produit commandé

class Commande(db.Entity):
 num_commande = orm.PrimaryKey(int)
 quantité = orm.Required(int)
 montant = orm.Required(float)
 mois = orm.Required(int)
 année = orm.Required(int)
 client = orm.Required(Client)
 produit = orm.Required(Produit)

Pour afficher

La commande show est une commande d'affichage à tout faire. Elle permet ici de vérifier le schéma
de la classe.

Last update: 2020/11/24 21:35 public:appro-s7:ta2 https://wiki.centrale-med.fr/informatique/public:appro-s7:ta2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/30 20:22

orm.show(Client)

Association à un gestionnaire de BD

Les schémas de données définis dans les classes peuvent être implémentés dans différents
gestionnaires de bases de données.

Nous choisissons ici le gestionnaire sqlite, ce qui évite de définir une connexion un serveur distant. La
base de données est ici émulée en mémoire centrale (pour les besoins de l'exercice, les données
n'ont pas besoin d'être conservées)

db.bind(provider='sqlite', filename=':memory:')

Mode debug

Le mode debug permet de voir les échanges avec la base de données.

orm.set_sql_debug(True)

La commande generate_mapping définit l"appariement entre les objets et la base de données. Cela
correspond ici à la création de trois tables.

db.generate_mapping(create_tables=True)

Transfert des données Client

Les données sont lues dans le dataFtame data sur les quatre attributs définis et insérées dans la
base à l'aide du constructeur de la classe Client.

clients = data[["CLIENT", "TELEPHONE", "VILLE", "PAYS"]].drop_duplicates()
for c in clients.values:
 try:
 Client(id_client = c[0], telephone = c[1], ville = c[2], pays =
c[3])
 orm.commit()
 except:
 pass

On remarque que l'initialisation des clients ne porte que sur les attributs élémentaires
(la liste des achats n'est pas initialisée explicitement).

Affichage

2025/12/30 20:22 7/10 Les Pandas, les Poneys et la Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Pour afficher la liste de tous les clients (et non le schéma de la classe Client), il faut faire appel à la
méthode select() qui effectue une lecture dans la base avant l'affichage.

Client.select().show()

On peut également afficher les clients un par un à l'aide leur index (ici le nom du magasin)

print(Client["Land of Toys Inc."])
print(Client["Land of Toys Inc."].id_client)
print(Client["Land of Toys Inc."].ville)
print(Client["Land of Toys Inc."].pays)
print(Client["Land of Toys Inc."].achats)

On notera que la liste des achats est vide (les commandes n'ont pas encore été saisies)

L'appel à la méthode select() permet de sélectionner les clients selon la valeur d'un ou plusieurs
attributs. Cette sélection passe par une fonction anonyme lambda:

requête = Client.select(lambda c : c.pays == "France")

et on affiche le résultat:

requête.show()

Remarque : une requête se comporte comme un itérateur sur les objets:

for c in requête:
 print(c.id_client, c.ville, c.pays)

Transfert des données produits

Les produits sont insérés de la même façon que les clients:

produits = data[["CODE_PRODUIT", "TYPE_PRODUIT",
"PRIX_UNITAIRE"]].drop_duplicates()
for p in produits.values:
 try:
 Produit(code_produit = p[0], type_produit = p[1], prix_unitaire =
p[2])
 orm.commit()
 except:
 pass

Affichage du contenu de la classe

Produit.select().show()

Uniquement les 10 premiers:

Last update: 2020/11/24 21:35 public:appro-s7:ta2 https://wiki.centrale-med.fr/informatique/public:appro-s7:ta2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/30 20:22

orm.show(Produit.select()[:10])

Affichage d'un produit particulier

print (Produit['S10_1678'])
print (Produit['S10_1678'].type_produit)
print (Produit['S10_1678'].prix_unitaire)
print (Produit['S10_1678'].ventes)

Transfert des données ventes

Pour créer les commandes, il faut ici définir deux références :

une référence au client qui a effectué la commande
une référence au produit commandé

qui sont des objets définis précédemment lors de l’insertion des données client et des donnés produit.
Ils correspondent donc à des entrées de leurs classes respectives, indexes par leur identifiant
(id_client et code_produit).

ventes = data[["NUM_COMMANDE", "QUANTITE", "MONTANT", "MOIS", "ANNEE",
"CLIENT", "CODE_PRODUIT"]].drop_duplicates()
for v in ventes.values:
 try:
 client = Client[v[5]]
 produit = Produit[v[6]]
 Commande(num_commande = int(v[0]),
 quantité = int(v[1]),
 montant = float(v[2]),
 mois = int(v[3]),
 année = int(v[4]),
 client = client,
 produit = produit)
 orm.commit()
 except:
 pass

Affichage

Commande.select().show()

print(Commande[10118])
print('Montant :', Commande[10118].montant)
print('Quantité :', Commande[10118].quantité)
print('Année :', Commande[10118].année)
print('Mois :', Commande[10118].mois)
print('Client :', Commande[10118].client)

2025/12/30 20:22 9/10 Les Pandas, les Poneys et la Persistance des données

WiKi informatique - https://wiki.centrale-med.fr/informatique/

print('Produit :', Commande[10118].produit)

Exemples de requête

requête = Commande.select(lambda c : c.montant > 10000)
for r in requête:
 print(r.num_commande, r.quantité, r.mois, r.année, r.client, r.produit)

Ou plus simplement :

requête.show()

Autre écriture

requête = orm.select(c for c in Commande if c.montant > 10000)

Mise à jour automatique des contenus

Maintenant que les commandes on été entrées dans la base, la liste des achats est à présent
renseignée pour chaque client de la classe Client:

print(Client["Land of Toys Inc."].achats)

ou:

Client["Land of Toys Inc."].achats.select().show()

Et la liste des ventes est de même renseignée pour chaque produit de la classe Produit:

print (Produit['S10_1678'].ventes)

Modifier les valeurs

Produit['S12_1108'].prix_unitaire = 100
orm.commit()

Supprimer un objet

Produit['S12_1108'].delete()
orm.commit()

A faire

Last update: 2020/11/24 21:35 public:appro-s7:ta2 https://wiki.centrale-med.fr/informatique/public:appro-s7:ta2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/30 20:22

Pour chaque client, calculer le montant total des achats
Pour chaque produit, calculer le montant total des ventes
Corriger le champ pays pour les clients nord-américains : si le pays vaut
"United States", le remplacer par "USA"
Créez un nouveau client
Faites-lui commander plusieurs produits (n'oubliez pas de définir le numéro de
commande!!)
Vérifiez que les nouvelles commandes apparaissent bien dans la liste des ventes
de la classe Produits . Magique, non?

Création d'un schéma de données

Définissez un modèle ORM pour le schéma de données du TD1.
Remplissez la base à l'aide des données contenues dans animal.json et équipement.json
Effectuez quelques requêtes et mises à jour pour vérifier que tout marche bien
Reprenez votre programme de gestion de l'animalerie (TD 3 et 5) et remplacez les fichiers json
par une base de données sqlite en utilisant les fonctionnalités de pony pour lire et mettre à jour
les données.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:ta2

Last update: 2020/11/24 21:35

https://wiki.centrale-med.fr/informatique/public:appro-s7:td1
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8803e1&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2Fanimal.json
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a89c35&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2F%C3%A9quipement.json
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:ta2

	[Les Pandas, les Poneys et la Persistance des données]
	Les Pandas, les Poneys et la Persistance des données
	Les notebooks Jupyter
	Chargement des données avec Pandas
	Lecture des données
	pour afficher les lignes
	Modifier les données
	Sélectionner les données

	Organiser et transformer les données : Pony ORM
	Initialisation
	Création du schéma de données
	Classe Client
	Classe Produit
	Classe Commande
	Pour afficher

	Association à un gestionnaire de BD
	Mode debug

	Transfert des données Client
	Affichage

	Transfert des données produits
	Affichage du contenu de la classe
	Affichage d'un produit particulier

	Transfert des données ventes
	Affichage
	Exemples de requête
	Autre écriture

	Mise à jour automatique des contenus
	Modifier les valeurs
	Supprimer un objet

	Création d'un schéma de données

