
2026/02/04 07:41 1/10 MVC et hamsters...

WiKi informatique - https://wiki.centrale-med.fr/informatique/

MVC et hamsters...

Le patron de conception "Modèle - Vue - Contrôleur" est destiné à faciliter le développement
d'interfaces graphiques.

Une Interface graphique est constituée essentiellement de deux modules :

Le "front-end" (la "devanture"), qui est la partie du programme visible pour l'utilisateur et avec
laquelle l'utilisateur peut interagir à l'aide de menus, de boutons et de formulaires…
Le "back-end" (l'"arrière-boutique"), qui correspond aux rouages invisible à l'utilisateur,
permettant au programme de réaliser la tâche pour laquelle il a été conçu.

Pour développer un tel programme, on le divise généralement en trois modules appelés
respectivement:

le Modèle
la Vue
le Contrôleur

Le Modèle

Le modèle est la partie du programme qui manipule et met à jour les informations qui doivent être
conservées d'une session à l'autre. Il s'agit de l'ensemble des variables et objets qui sont créés et mis
à jour par l'utilisateur lorsqu'il interagit avec le programme.

La Vue

La Vue est la partie du programme qui gère la mise en page, la disposition des informations, des
boutons et des formulaires, l'organisation et la visibilité des différentes fenêtres du programme s'il y
en a.

La Vue fait appel au Contrôleur à chaque fois que l'utilisateur effectue une action (saisie
d'information, pointage de souris, sélection de menu, activation d'un bouton etc…)
La Vue fait appel au Modèle pour afficher en permanence un contenu actualisé par les actions
de l'utilisateur.

Le Contrôleur

Le contrôleur est la partie du programme qui gère les actions de l'utilisateur. Chacune des actions
proposées dans la vue est implémentée dans le contrôleur sous la forme d'une fonction.

Le contrôleur fait appel au Modèle lorsque l'action modifie les variables et objets manipulés par
le programme.

Last update: 2023/10/09 11:32 public:appro-s7:td1 https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Mise en œuvre

Dans ce TD, nous développons une application permettant de gérer une petite animalerie. Le
programme gère un cheptel de rongeurs (tamias, hamsters, etc..) qui vivent dans une cage.

La cage est constituée d'une litière, ainsi que d'une mangeoire, un nid et une roue pour faire de
l'exercice. La mangeoire, le nid et la roue ne peuvent accueillir qu'un seul animal. La litière peut
accueillir plusieurs animaux.
Les animaux passent par différents états au cours de la journée:

Lorsqu’ils se réveillent, ils sont "affamés" et doivent donc être placés sur la mangeoire
pour être nourris.
Une fois qu'ils ont mangé, ils sont "repus" et ont besoin d'exercice. Ils doivent donc être
placés sur la roue.
Après avoir fait du sport, ils sont "fatigués" et ont besoin de dormir. Ils doivent donc être
mis dans le nid pour se reposer.
et ainsi de suite…

L'état de notre animalerie est décrit à l'aide de deux fichiers json:

animal.json
équipement.json

Nous allons procéder par essai/erreur pour développer notre programme. Nous développerons, dans
l'ordre:

Le Modèle1.
Le Contrôleur2.
La Vue3.

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:09.png?id=public%3Aappro-s7%3Atd1
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8803e1&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2Fanimal.json
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a89c35&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2F%C3%A9quipement.json

2026/02/04 07:41 3/10 MVC et hamsters...

WiKi informatique - https://wiki.centrale-med.fr/informatique/

1. Le Modèle

Commençons par le Modèle. Le Modèle est la seule partir du programme autorisée à manipuler
directement les données contenues dans les tables. Il permet essentiellement de réaliser des
opérations de lecture et d'écriture dans les tableaux de données, qui doivent être mis à jour à chaque
action de l'utilisateur.

Nous disposons pour l'instant uniquement de deux fichiers :

le fichier animal.json contient l'état de cinq animaux, décrits par leur identifiant (ici un nom),
leur RACE, leur TYPE, leur ÉTAT et leur LIEU.

Voici en clair l'état initial des animaux:

Animal RACE TYPE ÉTAT LIEU
Tic tamia rongeur affamé litière
Tac tamia rongeur affamé litière
Patrick hamster rongeur affamé litière
Totoro ili pika rongeur repus mangeoire
Pocahontas opossum marsupial endormi nid

le fichier équipement.json contient l'identifiant et l'état des différents équipements.

Voici en clair l'état initial de l'équipement:

Équipement DISPONIBILITÉ
litière libre
mangeoire occupé
roue libre
nid occupé

Créez un nouveau projet.

Ajoutez animal.json et équipement.json au projet.
Créez le module Modèle.py ainsi qu'un fichier de test

Pensez également à conserver une copie de ces fichiers dans un répertoire orig, pour
que si les mises à jour ratent, vous puissiez repartir de zéro.

A faire

1. Lecture

1.1 État

Créez dans Modèle.py une fonction lit_état qui:

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8803e1&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2Fanimal.json
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a89c35&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2F%C3%A9quipement.json
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8803e1&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2Fanimal.json
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a89c35&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2F%C3%A9quipement.json

Last update: 2023/10/09 11:32 public:appro-s7:td1 https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

prend en paramètre le nom de l'animal
consulte le fichier animal.json
et retourne l'état de l'animal

import json

def lit_état(animal_id):
 . . .

Si l'animal est dans la liste, la fonction retourne la valeur de son "ETAT";
Si l'animal n'est pas dans la liste, la fonction:

affiche un message du type Désolé, XXX n'est pas un animal connu (où XXX
doit être remplacé par le nom de l'animal)
retourne None (état nul)

Les informations sont situées dans un fichier au format json. Pour lire le
contenu du fichier animal.json, il suffit d'ouvrir le fichier avec la commande
suivante :

 with open('animal.json', "r", encoding='utf-8') as f:
 animal = json.load(f)

on récupère ainsi un dictionnaire animal indexé par les identifiants des différents
animaux (ici Tic, Tac, Patrick, Totoro et Pocahontas).

Pour lire l'enregistrement complet d'un animal, on utilise l'adressage par
identifiant :

poca = animal['Pocahontas']

remarque : poca est lui-même un dictionnaire. Pour lire une valeur spécifique,
on utilise l'adressage par attribut

poca_race = poca['RACE']

ou de façon plus synthétique, la double indexation:

poca_race = animal['Pocahontas']['RACE']

La fonction lit_état doit passer les tests suivants:

import Modèle

def test_lit_etat():
 assert Modèle.lit_état('Tac') == 'affamé'

def test_lit_etat_nul():
 assert Modèle.lit_état('Bob') == None

2026/02/04 07:41 5/10 MVC et hamsters...

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Le premier test vérifie que l'état (initial) de l'animal Tac est "affamé".
Le second test vérifie que l'état nul (None) est retourné lorsque le nom n'est pas
dans le tableau

1.2 Lieu

Créez dans le Modèle une fonction lit_lieu analogue à lit_état qui retourne le lieu où se trouve
l'animal.

def lit_lieu(animal_id):
 . . .

De manière analogue fonction devra passer les tests suivants:

def test_lit_lieu():
 assert Modèle.lit_lieu('Tac') == 'litière'

def test_lit_lieu_nul():
 assert Modèle.lit_lieu('Bob') == None

1.3 Disponibilité

Créer une fonction vérifie_disponibilité retourne la disponibilité du lieu indiqué à partir de la
table des équipements.

def vérifie_disponibilité(équipement_id):
 . . .

Cette fonction devra passer les tests suivants :

def test_vérifie_disponibilité():
 assert Modèle.vérifie_disponibilité('litière') == 'libre'
 assert Modèle.vérifie_disponibilité('nid') == 'occupé'

Si l'équipement n'est pas dans la liste, la fonction:
affiche un message du type Désolé, XXX n'est pas un équipement
connu (où XXX doit être remplacé par le nom de l'équipement)
retourne None (état nul)

def test_vérifie_disponibilité_nul():
 assert Modèle.vérifie_disponibilité('nintendo') == None

Last update: 2023/10/09 11:32 public:appro-s7:td1 https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

1.4 Cherche_occupant

La fonction cherche_occupant retourne la liste des occupants du lieu indiqué à partir de la table
des animaux.

def cherche_occupant(lieu):
 . . .

Elle devra passer les tests suivants:

def test_cherche_occupant():
 assert Modèle.cherche_occupant('nid') == ['Pocahontas']
 assert 'Tac' in Modèle.cherche_occupant('litière')
 assert 'Tac' not in Modèle.cherche_occupant('mangeoire')

Si le lieu n'est pas référencé, la fonction:
affiche un message du type Désolé, XXX n'est pas un lieu connu
(où XXX doit être remplacé par le nom du lieu)
retourne None (état nul)

def test_cherche_occupant_nul():
 assert Modèle.cherche_occupant('casino') == None

2. Ecriture

2.1 Changement d'état

Créez une fonction d'écriture change_état qui modifie l'état de l'animal à partir de son nom et d'un
nouvel état.

def change_état(id_animal, état):
 . . .

La fonction devra passer les tests suivants :

def test_change_état():
 Modèle.change_état('Totoro', 'fatigué')
 assert Modèle.lit_état('Totoro') == 'fatigué'
 Modèle.change_état('Totoro', 'excité comme un pou')
 assert Modèle.lit_état('Totoro') == 'fatigué'
 Modèle.change_état('Bob', 'fatigué')
 assert Modèle.lit_état('Bob') == None

Autrement dit seuls les états affamé, fatigué, repus, endormi sont autorisés.

2026/02/04 07:41 7/10 MVC et hamsters...

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Pour modifier de manière effective les changements effectués, il est bien sûr
nécessaire de mettre à jour le fichier avec la fonction json.dump.

 with open('animal.json', "w") as g:
 json.dump(animal, g)

Pour sauver un fichier json plus joli, on peut utiliser le paramètre indent. Par
exemple :

json.dump(animal, open("animal.json", "w"), indent=4)

2.2 Changement de lieu

Créez une fonction change_lieu permettant à un animal de changer de lieu.

def change_lieu(id_animal, lieu):
 . . .

Attention, à l'exception de la litière, chaque lieu ne peut être occupé que par un seul
animal à la fois.

Lorsqu'un animal quitte un lieu, celui-ci devient libre;
Lorsqu'un animal entre dans un nouveau lieu, celui-ci devient occupé (à
l'exception de la litière qui est toujours libre);
Il faut bien sûr modifier l'attribut LIEU de l'animal.

La fonction change_lieu modifie à la fois le fichier animal.json et le fichier
équipement.json.

La fonction devra passer les tests suivants:

def test_change_lieu():
 Modèle.change_lieu('Totoro', 'roue')
 assert Modèle.lit_lieu('Totoro') == 'roue'
 assert Modèle.vérifie_disponibilité('litière') == 'libre'
 assert Modèle.vérifie_disponibilité('roue') == 'occupé'

Si le lieu est occupé, la fonction

ne change rien
affiche le message Désolé, le lieu XXX est déjà occupé.

def test_change_lieu_occupé():
 Modèle.change_lieu('Totoro', 'nid')

Last update: 2023/10/09 11:32 public:appro-s7:td1 https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

 assert Modèle.lit_lieu('Totoro') == 'roue'

Si le lieu n'existe pas, la fonction ne change rien:

def test_change_lieu_nul_1():
 Modèle.change_lieu('Totoro', 'casino')
 assert Modèle.lit_lieu('Totoro') == 'roue'

Si l'animal n'existe pas, la fonction ne change rien non plus:

def test_change_lieu_nul_2():
 Modèle.change_lieu('Bob', 'litière')
 assert Modèle.lit_lieu('Bob') == None

2. Le Contrôleur

Le contrôleur est la partie du programme qui met en œuvre l'ensemble des actions possibles:

nourrir
divertir
coucher
réveiller

En vérifiant certaines contraintes d'intégrité:

seul un animal affamé accepte d'être nourri
seul un animal repus accepte de faire de l'exercice
seul un animal fatigué accepte de dormir
seul un animal endormi peut être réveillé

Ajoutez à votre projet un nouveau module Contrôleur.py qui implémentera les fonctions nourrir,
divertir, coucher et réveiller. Le contrôleur fait appel au module Modèle pour toutes les
opérations de lecture et d'écriture.

A faire

1. Nourrir

Créez une fonction nourrir qui prend en argument un identifiant d'animal.

Si la mangeoire est occupée, la fonction affiche un message du type Impossible, la
mangeoire est actuellement occupée par XXX.
Si l'animal n'est pas affamé, la fonction affiche un message du type Désolé, XXX n'a pas
faim!.
Si l'animal est affamé et la mangeoire est libre, alors:

L'animal est déplacé vers la mangeoire
L'animal devient repus
L'état de la mangeoire devient occupé

2026/02/04 07:41 9/10 MVC et hamsters...

WiKi informatique - https://wiki.centrale-med.fr/informatique/

(Sinon rien ne change)

La fonction nourrir devra passer les tests suivants :

import Contrôleur

def test_nourrir():
 if Modèle.vérifie_disponibilité('mangeoire') == 'libre' and
Modèle.lit_état('Tic') == 'affamé':
 Contrôleur.nourrir('Tic')
 assert Modèle.vérifie_disponibilité('mangeoire') == 'occupé'
 assert Modèle.lit_état('Tic') == 'repus'
 assert Modèle.lit_lieu('Tic') == 'mangeoire'
 Contrôleur.nourrir('Tac')
 assert Modèle.lit_état('Tac') == 'affamé'
 assert Modèle.lit_lieu('Tac') == 'litière'
 Contrôleur.nourrir('Pocahontas')
 assert Modèle.lit_état('Pocahontas') == 'endormi'
 assert Modèle.lit_lieu('Pocahontas') == 'nid'
 Contrôleur.nourrir('Bob')
 assert Modèle.lit_état('Bob') == None
 assert Modèle.lit_lieu('Bob') == None
 assert Modèle.vérifie_disponibilité('mangeoire') == 'occupé'

A l'issue des tests, les trois messages suivants doivent s'afficher :
Désolé, la mangeoire est occupée par ['Tic']
Désolé, Pocahontas n'a pas faim
Désolé, Bob n'est pas un animal connu

2. Divertir

Créez et testez une fonction divertir qui prend en argument un identifiant d'animal.

Si la roue est occupée, la fonction affiche un message du type Impossible, la roue est
actuellement occupée par XXX.
Si l'animal n'est pas repus, la fonction affiche un message du type Désolé, XXX n'est pas
en état de faire du sport!.
Si l'animal est repus et la roue est libre, alors:

L'animal est déplacé vers la roue
L'animal devient fatigué
L'état du lieu initial devient libre

(Sinon rien ne change)

3. Coucher

Créez et testez une fonction coucher qui prend en argument un identifiant d'animal.

Si le nid est occupé, la fonction affiche un message du type Impossible, le nid est
actuellement occupé par XXX.

Last update: 2023/10/09 11:32 public:appro-s7:td1 https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Si l'animal n'est pas fatigué, la fonction affiche un message du type Désolé, XXX n'est
pas fatigué!.
Si l'animal est fatigué et le nid est libre, alors:

L'animal est déplacé vers le nid
L'animal devient endormi
L'état du lieu initial devient libre

(Sinon rien ne change)

4. Réveiller

Créez et testez une fonction réveiller qui prend en argument un identifiant d'animal.

Si l'animal n'est pas endormi, la fonction affiche un message du type Désolé, XXX ne dort
pas!.
Si l'animal est endormi, alors:

L'animal est déplacé vers la litière
L'animal devient affamé
L'état du nid devient libre

(Sinon rien ne change)

3. La Vue

Cette partie sera vue dans un prochain TD!

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

Last update: 2023/10/09 11:32

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

	[MVC et hamsters...]
	MVC et hamsters...
	Le Modèle
	La Vue
	Le Contrôleur

	Mise en œuvre
	1. Le Modèle
	A faire
	1. Lecture
	1.1 État
	1.2 Lieu
	1.3 Disponibilité
	1.4 Cherche_occupant

	2. Ecriture
	2.1 Changement d'état
	2.2 Changement de lieu

	2. Le Contrôleur
	A faire
	1. Nourrir
	2. Divertir
	3. Coucher
	4. Réveiller

	3. La Vue

