
2025/12/11 11:07 1/7 TD2 : Les hamsters ... la suite

WiKi informatique - https://wiki.centrale-med.fr/informatique/

TD2 : Les hamsters ... la suite

Ce TD fait suite au TD1. Dans le TD1, nous avons vu comment développer une application selon le
patron de conception "Modèle - Vue - Contrôleur" (MVC).

Dans ce TD, nous complétons le programme entamé au TD1 pour obtenir une interface
fonctionnelle. Vous pouvez vous inspirer de la correction proposée

Interface graphique

Nous allons programmer une interface graphique avec la librairie appJar (voir aussi S5-POO)

L'écriture d'une interface graphique permet de mettre en œuvre les principes de la programmation
événementielle:

Une interface est constituée de plusieurs éléments graphiques (appelés widgets) positionnés
dans une fenêtre.

les widgets sont éditables/positionnables via les méthodes définies dans la librairie
il est possible de modifier leur contenu en cours d'exécution (via des événements)

Les actions de l'utilisateur (mouvements et clics de souris, entrées clavier ,…) produisent des
événements:

Les événements sont déclenchés par des widgets actifs (boutons, menus,…) capables de
lancer l'exécution d'une ou plusieurs opérations:

mise à jour d'une variable ou d'un attribut
lancement d'un calcul
envoi d'un message
modification du rendu visuel
arrêt du programme
etc.

Chaque élément graphique est caractérisé par son identifiant unique
créé au moment de son initialisation
utilisable au sein de l'espace des noms de l'application :

(donc par toute fonction qui reçoit en paramètre le descripteur de l'application)
permettant de changer le rendu graphique en cours d'exécution.

Dans le cadre du patron MVC, les informations affichées dans l'interface (le contenu des widgets) sont
paramétrées par les objets du modèle. On a typiquement le cycle suivant :

L'utilisateur déclenche une action via l'interface
Le contrôleur exécute l'action
Les changements produits par l'action sont répercutés dans le modèle
l'interface consulte le modèle pour mettre à jour son contenu.

A faire

Ouvrez Pycharm et reprenez le projet du TD1.

Pour rappel, le programme sert à gérer une petite animalerie (constituée de rongeurs divers…). Les
animaux sont décrits dans le fichier animal.json et les équipements (litière, roue, mangeoire,…)

https://wiki.centrale-med.fr/informatique/public:appro-s7:td1
https://wiki.centrale-med.fr/informatique/public:appro-s7:td3-correc
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=30ea98&media=http%3A%2F%2Fappjar.info
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=12be8d&media=https%3A%2F%2Finformatique.centrale-marseille.fr%2Ftc_poo%2Fapprendre%2Fui.html
https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

Last update: 2023/10/15 22:37 public:appro-s7:td2 https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/11 11:07

dans le fichier équipement.json.

le modèle définit les opérations permettant la mise à jour de l'état des animaux et de
l'occupation des équipements
le contrôleur définit les actions possibles, à savoir nourrir, divertir, coucher et réveiller les
animaux. Les actions sont valides (ou non) en fonction de l'état des animaux et de l'occupation
des équipements. Des messages de mise en garde s'affichent lorsque l'action choisie n'est pas
valide.

Exécutez les tests pour vérifier que tout fonctionne bien

Construction de l'interface

Ajoutez un module vue.py
Pour programmer l'interface nous utilisons la librairie appJar:

from appJar import gui

On initialise une application (correspondant à une fenêtre graphique)

app = gui()

Le but est de construire une interface très simple:

Le premier bandeau (rose saumon) peut être défini à l'aide des commandes suivantes :

app.addLabel("en-tête", "Bienvenue à l'animalerie!")
app.setLabelBg("en-tête", "salmon")

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=c34851&media=http%3A%2F%2Fappjar.info%2F

2025/12/11 11:07 3/7 TD2 : Les hamsters ... la suite

WiKi informatique - https://wiki.centrale-med.fr/informatique/

app.setLabelFg("en-tête", "white")

Un widget de type Label est ajouté à l'application.
Son index (autrement dit son identifiant) est "en-tête"
Pour modifier son rendu, on applique un setter : app.setXXX… indexé par "en-tête".

Pour tester le rendu, il suffit d'ajouter la commande:

app.go()

et d'exécuter vue.py.

A FAIRE:

Définissez un deuxième bandeau de couleur grise ("gray") affichant le texte
"Tableau de bord" en blanc, et exécutez la vue pour vérifier l'affichage

Pensez à définir un nouvel index

Pour afficher l'état des animaux, il faut à présent consulter le modèle.

import modele

La liste des animaux n'étant pas donnée par le modèle, nous la définissons dans la vue :

liste_animaux = ['Tic', 'Tac', 'Totoro', 'Patrick', 'Pocahontas']

A FAIRE:

Pour chaque animal de la liste :

Utiliser le modèle pour connaître l'état de l'animal ainsi que son lieu
Initialiser un widget de type Label,

dont l'index est le nom de l'animal
et dont le contenu est un texte indiquant le nom de l'animal, son lieu et
son état

Exécuter la vue pour vérifier que les animaux s'affichent bien.

La deuxième partie de la vue est constituée de deux listes à choix multiples pour choisir l'action à
effectuer :

choix de l'animal
et choix de l'action

Le bouton Go permet de lancer l'exécution, via un appel au contrôleur.

Last update: 2023/10/15 22:37 public:appro-s7:td2 https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/11 11:07

Listes à choix multiples

Dans l'exemple présenté, les listes à choix multiples sont réalisées par des widgets de type
"RadioButton" permettant de fixer une valeur. Nous avons deux valeurs à définir :

l'identifiant de l'animal sur lequel agir
le choix de l'action

Les boutons radio servant à gérer une même variable ont le même index
chaque bouton sert à instancier une valeur différente
l a v a l e u r c o u r a n t e e s t o b t e n u e e n a p p e l a n t l a m é t h o d e
getRadioButton(index)

A FAIRE:

pour chaque animal a de la liste des animaux, initialiser un bouton radio indexé
par "id_animal":

app.addRadioButton("id_animal", a)

définissez la liste des actions possibles
pour chaque action c de la liste des actions initialisez un bouton radio indexé
par "action":

app.addRadioButton("action", c)

exécutez la vue et vérifiez que les boutons radio permettent bien la sélection de
valeurs.

Boutons d'action

On ajoute à présent le bouton d'action qui permet d'exécuter les actions définies dans le contrôleur:

On commence par importer le contrôleur:

import controleur

Rappel : le contrôleur propose les actions : nourrir, divertir, endormir et réveiller

Exemple :

controleur.nourrir(id_animal)

a pour effet de modifier dans le modèle l'état de l'animal choisi :

2025/12/11 11:07 5/7 TD2 : Les hamsters ... la suite

WiKi informatique - https://wiki.centrale-med.fr/informatique/

il est déplacé vers la mangeoire (si elle n'est pas occupée)
et l'animal passe de l'état affamé à repus

Dans l'interface, un bouton (Button) permet de lancer l'exécution d'une fonction selon la syntaxe:

app.addButton("go", press)

A FAIRE:

Définir la fonction :

def press(act):
 ...

qui exécute une action du contrôleur selon les deux valeurs :

app.getRadioButton("action") : le nom de l'action
app.getRadioButton("id_animal") : l'identifiant de l'animal

ainsi si l'action vaut "nourrir" alors il faut exécuter :

controleur.nourrir(app.getRadioButton("id_animal"))

etc.

Codez les appels aux actions nourrir, divertir, coucher et réveiller dans la
fonction
Exécutez la vue
Pour vérifier que les actions sont bien prises en compte, effectuez une action
invalide. Si l'action n'est pas valide, un message du type Attention XXX n'a
pas faim doit en effet s'afficher dans la console.

Ce n'est pas fini !

Lorsqu'elles sont valides, les actions modifient le contenu du modèle, mais ces changements ne sont
pas visibles au niveau de l'interface. Pour répercuter le résultat de l'action dans la vue, il faut donc
mettre à jour le widgets correspondant à l'affichage de l'état des animaux (le "tableau de bord").

Les identifiants d'animaux servant aussi d'index pour les widgets du tableau de bord,
on modifie le contenu d'un widget à l'aide de :

app.setLabel(id_animal, ...)

Last update: 2023/10/15 22:37 public:appro-s7:td2 https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/11 11:07

A FAIRE:

Écrire une fonction qui met à jour l'ensemble des widgets du tableau de bord en
consultant le modèle à partir de la liste des animaux (comme dans la partie
initialisation)
Ajouter un appel à cette fonction à la fin de la fonction press()
Exécuter la vue et vérifier que le tableau de bord est bien modifié lorsque les
actions sont valides.

Améliorations

Il est préférable lorsque l'action n'est pas valide d'afficher le message d'erreur dans une fenêtre pop-
up du type :

Les fenêtre à message sont exécutées à l'aide d'une commande:

app.warningBox("", texte)

A FAIRE:

Comme les messages d'erreur sont générés dans le contrôleur, il faut modifier
les fonctions nourrir, divertir, coucher et réveiller pour qu'elles retournent un
texte qui sera ensuite affiché dans une fenêtre popup par la vue…
Définir également un message lorsque l'action est valide (exemple
"Félicitations, Totoro a rejoint le nid et est maintenant
endormi.")
Les actions valides apparaissent dans des infoBox et les actions invalides dans
des warningBox

Interface tabulaire

Il est possible d'améliorer le rendu visuel de la vue en utilisant un positionnement tabulaire pour les
widgets. Vous êtes invités à consulter la documentation pour obtenir un rendu du type:

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:td5-02.png?id=public%3Aappro-s7%3Atd2
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=908b8a&media=http%3A%2F%2Fappjar.info%2FpythonWidgetLayout

2025/12/11 11:07 7/7 TD2 : Les hamsters ... la suite

WiKi informatique - https://wiki.centrale-med.fr/informatique/

NB :

pour le bleu pâle : app.setLabelBg(label, "lavender")
pour aligner à gauche : app.setLabelAlign(label, "left")

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

Last update: 2023/10/15 22:37

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

	[TD2 : Les hamsters ... la suite]
	TD2 : Les hamsters ... la suite
	Interface graphique
	A faire
	Construction de l'interface
	Listes à choix multiples
	Boutons d'action
	Ce n'est pas fini !
	Améliorations
	Interface tabulaire

