2025/12/11 11:07 1/7 TD2 : Les hamsters ... la suite

TD2 : Les hamsters ... la suite

Ce TD fait suite au TD1. Dans le TD1, nous avons vu comment développer une application selon le
patron de conception "Modéle - Vue - Controleur" (MVC).

e Dans ce TD, nous complétons le programme entamé au TD1 pour obtenir une interface
fonctionnelle. Vous pouvez vous inspirer de la correction proposée

Interface graphique

Nous allons programmer une interface graphique avec la librairie appJar (voir aussi S5-POO)

L'écriture d'une interface graphique permet de mettre en ceuvre les principes de la programmation
événementielle:

* Une interface est constituée de plusieurs éléments graphiques (appelés widgets) positionnés
dans une fenétre.
o les widgets sont éditables/positionnables via les méthodes définies dans la librairie
o il est possible de modifier leur contenu en cours d'exécution (via des événements)
e Les actions de I'utilisateur (mouvements et clics de souris, entrées clavier ,...) produisent des
événements:
o Les événements sont déclenchés par des widgets actifs (boutons, menus,...) capables de
lancer I'exécution d'une ou plusieurs opérations:
» mise a jour d'une variable ou d'un attribut
» [ancement d'un calcul
= envoi d'un message
= modification du rendu visuel
= arrét du programme
= etc.
» Chaque élément graphique est caractérisé par son identifiant unique
o créé au moment de son initialisation
o utilisable au sein de I'espace des noms de |'application :
» (donc par toute fonction qui recoit en parametre le descripteur de I'application)
o permettant de changer le rendu graphique en cours d'exécution.

Dans le cadre du patron MVC, les informations affichées dans l'interface (le contenu des widgets) sont
paramétrées par les objets du modele. On a typiquement le cycle suivant :

L'utilisateur déclenche une action via l'interface

Le controleur exécute I'action

Les changements produits par I'action sont répercutés dans le modele
I'interface consulte le modele pour mettre a jour son contenu.

A faire

Ouvrez Pycharm et reprenez le projet du TD1.

Pour rappel, le programme sert a gérer une petite animalerie (constituée de rongeurs divers...). Les
animaux sont décrits dans le fichier animal. json et les équipements (litiere, roue, mangeoire,...)

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/public:appro-s7:td1
https://wiki.centrale-med.fr/informatique/public:appro-s7:td3-correc
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=30ea98&media=http%3A%2F%2Fappjar.info
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=12be8d&media=https%3A%2F%2Finformatique.centrale-marseille.fr%2Ftc_poo%2Fapprendre%2Fui.html
https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

Last update: 2023/10/15 22:37 public:appro-s7:td2 https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

dans le fichier équipement. json.

 |le modele définit les opérations permettant la mise a jour de I'état des animaux et de
I'occupation des équipements

* le contréleur définit les actions possibles, a savoir nourrir, divertir, coucher et réveiller les
animaux. Les actions sont valides (ou non) en fonction de I'état des animaux et de I'occupation
des équipements. Des messages de mise en garde s'affichent lorsque I'action choisie n'est pas
valide.

e Exécutez les tests pour vérifier que tout fonctionne bien
Construction de l'interface

e Ajoutez un module vue. py
e Pour programmer l'interface nous utilisons la librairie app)ar:

appJar gui
e On initialise une application (correspondant a une fenétre graphique)
app = gui

Le but est de construire une interface tres simple:

interface.py = 0O X

Tableau de bord '

Tie : fatigué, roue
Tac : repus, mangeoire
Totoro : endorml, nid |
Patrick : affame, litére

Pocahontas : affamé, litiére ;
Actions |
= Tie

Tac

Totoro

Patrick
Pocahontas
¥ nourrlr |
divertir
coucher
révelller

o

Le premier bandeau (rose saumon) peut étre défini a I'aide des commandes suivantes :

app.addLabel("en-téte", "Bienvenue a l'animalerie!"
app.setLabelBg("en-téte", "salmon"

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/11 11:07


https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=c34851&media=http%3A%2F%2Fappjar.info%2F

2025/12/11 11:07 3/7 TD2 : Les hamsters ... la suite

app.setLabelFg("en-téte", "white"

e Un widget de type Label est ajouté a I'application.
e Son index (autrement dit son identifiant) est "en-téte"
e Pour modifier son rendu, on applique un setter : app.setXXX.. indexé par "en-téte".

Pour tester le rendu, il suffit d'ajouter la commande:

app.go

et d'exécuter vue. py.

A FAIRE:
Définissez un deuxieme bandeau de couleur grise ("gray") affichant le texte

‘P "Tableau de bord" en blanc, et exécutez la vue pour vérifier I'affichage
i

(!) Pensez & définir un nouvel index

Pour afficher I'état des animaux, il faut a présent consulter le modele.

modele
* La liste des animaux n'étant pas donnée par le modele, nous la définissons dans la vue :

liste animaux ‘Tic', 'Tac', 'Totoro', 'Patrick', 'Pocahontas’

A FAIRE:

Pour chaque animal de la liste :

e |nitialiser un widget de type Label,
o dont l'index est le nom de I'animal
o et dont le contenu est un texte indiquant le nom de I'animal, son lieu et
son état
» Exécuter la vue pour vérifier que les animaux s'affichent bien.

'P » Utiliser le modele pour connaitre I'état de I'animal ainsi que son lieu
N\

La deuxieme partie de la vue est constituée de deux listes a choix multiples pour choisir I'action a
effectuer :

e choix de I'animal
¢ et choix de I'action

Le bouton Go permet de lancer I'exécution, via un appel au contréleur.

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2023/10/15 22:37 public:appro-s7:td2 https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

Listes a choix multiples
Dans I'exemple présenté, les listes a choix multiples sont réalisées par des widgets de type
"RadioButton" permettant de fixer une valeur. Nous avons deux valeurs a définir :

e |'identifiant de I'animal sur lequel agir
e le choix de I'action

* Les boutons radio servant a gérer une méme variable ont le méme index
@ e chaque bouton sert a instancier une valeur différente
ela valeur courante est obtenue en appelant la méthode
getRadioButton(index)

A FAIRE:

e pour chaque animal a de la liste des animaux, initialiser un bouton radio indexé
par "id animal":

app.addRadioButton("id animal”, a

,‘ * définissez la liste des actions possibles
7 e pour chaque action c de la liste des actions initialisez un bouton radio indexé
par "action":

app.addRadioButton("action", c

» exécutez la vue et vérifiez que les boutons radio permettent bien la sélection de
valeurs.

Boutons d'action

On ajoute a présent le bouton d'action qui permet d'exécuter les actions définies dans le controleur:

On commence par importer le contréleur:

controleur

Rappel : le contréleur propose les actions : nourrir, divertir, endormir et réveiller

Exemple :

o
controleur.nourrir(id animal

a pour effet de modifier dans le modele I'état de I'animal choisi :

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/11 11:07



2025/12/11 11:07 5/7 TD2 : Les hamsters ... la suite

@ e il est déplacé vers la mangeoire (si elle n'est pas occupée)
* et I'animal passe de I'état affamé a repus

Dans l'interface, un bouton (Button) permet de lancer I'exécution d'une fonction selon la syntaxe:

app.addButton("go" press

A FAIRE:

Définir la fonction :

press(act

qui exécute une action du contréleur selon les deux valeurs :

e app.getRadioButton("action") : le nom de l'action
e app.getRadioButton("id animal") : I'identifiant de I'animal

'\,'P ainsi si I'action vaut "nourrir" alors il faut exécuter :
controleur.nourrir(app.getRadioButton("id animal"

etc.

e Codez les appels aux actions nourrir, divertir, coucher et réveiller dans la
fonction

e Exécutez la vue

e Pour vérifier que les actions sont bien prises en compte, effectuez une action
invalide. Si I'action n'est pas valide, un message du type Attention XXX n'a
pas faim doit en effet s'afficher dans la console.

Ce n'est pas fini !

Lorsqu'elles sont valides, les actions modifient le contenu du modele, mais ces changements ne sont
pas visibles au niveau de I'interface. Pour répercuter le résultat de I'action dans la vue, il faut donc
mettre a jour le widgets correspondant a I'affichage de I'état des animaux (le "tableau de bord").

Les identifiants d'animaux servant aussi d'index pour les widgets du tableau de bord,
@ on modifie le contenu d'un widget a I'aide de :

app.setLabel(id animal

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2023/10/15 22:37 public:appro-s7:td2 https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

A FAIRE:

e Ecrire une fonction qui met a jour I'ensemble des widgets du tableau de bord en
consultant le modele a partir de la liste des animaux (comme dans la partie
\) initialisation)
e Ajouter un appel a cette fonction a la fin de la fonction press()
» Exécuter la vue et vérifier que le tableau de bord est bien modifié lorsque les
actions sont valides.

Améliorations

Il est préférable lorsque I'action n'est pas valide d'afficher le message d'erreur dans une fenétre pop-
up du type :

x

é Désolé, Totoreo n'a pas faim...

Les fenétre a message sont exécutées a l'aide d'une commande:

app.warningBox("", texte)

A FAIRE:

e Comme les messages d'erreur sont générés dans le contréleur, il faut modifier
les fonctions nourrir, divertir, coucher et réveiller pour qu'elles retournent un
texte qui sera ensuite affiché dans une fenétre popup par la vue...

\) e Définir également un message lorsque I'action est valide (exemple
"Félicitations, Totoro a rejoint le nid et est maintenant
endormi.")

e Les actions valides apparaissent dans des infoBox et les actions invalides dans
des warningBox

Interface tabulaire

Il est possible d'améliorer le rendu visuel de la vue en utilisant un positionnement tabulaire pour les
widgets. Vous étes invités a consulter la documentation pour obtenir un rendu du type:

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/11 11:07


https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:td5-02.png?id=public%3Aappro-s7%3Atd2
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=908b8a&media=http%3A%2F%2Fappjar.info%2FpythonWidgetLayout

2025/12/11 11:07 717 TD2 : Les hamsters ... la suite

Interface_3.py - 0O X
Blenvenue a l'animalerie!
Totoro Il pika, affamé, litiére
Tic tamila, endormi, nid
Tac tamia, repus, mangeoire
Patrick hamster, affamé, litiere

Pocahontas opossum, affameé, litiere

* Totoro “ nourrlr
~ Tie © divertir
~ Tac ™ coucher
© Patrick o révelller go
“ Pocahontas
NB :
p
wl e pour le bleu pale : app.setLabelBg(label, "lavender")
. e pour aligner a gauche : app.setLabelAlign(label, "left")

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

Last update: 2023/10/15 22:37

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td2

	[TD2 : Les hamsters ... la suite]
	TD2 : Les hamsters ... la suite
	Interface graphique
	A faire
	Construction de l'interface
	Listes à choix multiples
	Boutons d'action
	Ce n'est pas fini !
	Améliorations
	Interface tabulaire




