2025/12/31 16:38 1/12 Organiser et transformer les données : Pony ORM

Organiser et transformer les données : Pony ORM

Ici nous apprenons a utiliser la librairie Pony pour la manipulation et la mise en forme des données.

Pour installer les librairie pandas et pony, vous devez utfuiliser un gestionnaire d'installation.

Attention la librairie pony n'est pas disponible sur les depots d'Anaconda. Il est
préférable d'utiliser l'installeur pip en ligne de commande:

$ python -m pip install pandas pony

La librairie Pony ORM est un gestionnaire de persistance qui permet la mise en correspondance entre
les objets d'un programme et les valeurs d'une base de données, pour assurer leur conservation
d'une session a l'autre.

Pony effectue toutes les opérations de sauvegarde de maniere transparente. La création et la mise a
jour des objets persistants s'accompagne automatiquement d'opérations de lecture/écriture vers la
base de donnée. Les données sont donc conservées sans appel explicite a des requétes SQL.

Initialisation

pony orm

db = orm.Database
Chargement des données avec Pandas

L'utilisation de données structurées dans un programme Python nécessite de faire appel a des
librairies spécialisées. Nous utiliserons ici la librairie pandas qui sert a la mise en forme et a I'analyse
des données.

numpy np
pandas

On considere une série d’enregistrements concernant des ventes réalisées par un exportateur de
véhicules miniatures. Pour chaque vente, il entre dans son registre de nombreuses informations :

e nom de la société cliente

nom et prénom du contact, adresse, téléphone
nombre d'unités vendues

prix de vente

etc...

Ces informations sont stockées dans un fichier au format ‘csv’ (comma separated values) :
ventes new.csv. Téléchargez ce fichier et copiez-le dans votre répertoire de travail.

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=305db6&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fventes_new.csv

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

Dans un premier temps, regardez son contenu avec un editeur de texte (geany, gedit ou autre...).
La premiere ligne contient les noms des attributs (NUM COMMANDE, QUANTITE,...). Les ligne suivantes
contiennent les valeurs d’attributs correspondant a une vente donnée. En tout plus de 2000 ventes
sont répertoriées dans ce fichier.

Ouvrez-le maintenant a I'aide d'un tableur (par exemple localc). Les données sont maintenant
“rangées” en lignes et colonnes pour faciliter la lecture.

Déplacez le fichier ventes new.csv dans votre répertoire de travail.

Lecture des données

Les données sont au format csv, on utilise:

e pandas.read csv. Voir dataframes pandas. Pandas permet également de lire les données au
format x1s et x1sx (Excel).

open('ventes new.csv', encoding='utf-8' f:
data = pandas.read csv(f
data

avec data une structure de données de type DataFrame
Création du schéma de données
Nous définissons ici trois schémas de classes correspondant aux ensembles d'entités Client,
Commande et Produit.
* Client(id_client, téléphone, ville, pays)

e Commande(num_commande, code_produit, id_client, quantité, montant, mois, année)
e Produit(code produit, type_produit, prix_unitaire)

Les clés étrangeres de la table des commande définissent deux relations de un a plusieurs :

* une relation de un a plusieurs entre un produit et des commandes,
« et une relation de un a plusieurs entre un client et des commandes.

C!) Attention, dans la table commande, code produit est également une clé étrangere

Dans un modele ORM, les relations de un a plusieurs se traduisent par des attributs de type liste ou
ensemble :

e A un client correspond un ensemble de commandes
e A un produit correspond un ensemble de commandes
e A une commande correspond un client et un produit

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=b6a56a&media=http%3A%2F%2Fwww.xavierdupre.fr%2Fapp%2Fensae_teaching_cs%2Fhelpsphinx%2Fnotebooks%2Ftd2a_cenonce_session_1.html#dataframe-pandas

2025/12/31 16:38 3/12 Organiser et transformer les données : Pony ORM

Classe Client

Les classes sont définies ici comme des schémas de données.

La classe Client hérite de la classe générique Entity. Les attributs des objets obéissent a une
définition parmi quatre définitions possibles :

attribut clé primaire : PrimaryKey

attribut requis (la valeur doit étre renseignée) : Required
attribut facultatif: Optional

relation de un a plusieurs : Set

Client(db.Entity):
id client orm.PrimaryKey(str
telephone = orm.Required(str
ville = orm.Required(str
pays orm.Required(str
achats = orm.Set('Commande’

Classe Produit

Produit(db.Entity
code produit orm.PrimaryKey(str
type produit orm.Required(str
prix unitaire = orm.Required(float
ventes orm.Set ('Commande’

Classe Commande

Dans la classe Commande, il n'y a pas de clé étrangere (comme dans le modele relationnel) mais :

e un attribut de type Client qui lie la commande au client qui a effectié la commande
e un attribut de type Produit qui lie la commande au produit commandé

Commande (db.Entity
num_commande = orm.Required(int
code produit = orm.Required(str
orm.PrimaryKey (num commande, code produit
quantité = orm.Required(int
montant orm.Required(float
mois = orm.Required(int
année = orm.Required(int
client orm.Required(Client
produit orm.Required(Produit

Pour afficher

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

La commande show est une commande d'affichage a tout faire. Elle permet ici de vérifier le schéma
de la classe.

orm.show(Client

Association a un gestionnaire de BD

Les schémas de données définis dans les classes peuvent étre implémentés dans différents
gestionnaires de bases de données.

Nous choisissons ici le gestionnaire sqlite, ce qui évite de définir une connexion un serveur distant. La
base de données est ici émulée en mémoire centrale (pour les besoins de I'exercice, les données
n'ont pas besoin d'étre conservées)

db.bind(provider='sqlite', filename='ventes.db', create db=True

Mode debug

Le mode debug permet de voir les échanges avec la base de données.
orm.set sql debug(True

La commande generate mapping définit I"appariement entre les objets et la base de données. Cela
correspond ici a la création de trois tables.

db.generate mapping(create tables=True

Transfert des données Client

Les données sont lues dans le dataFrame data sur les quatre attributs définis et insérées dans la
base a I'aide du constructeur de la classe Client.

clients datal ["CLIENT", "TELEPHONE", "VILLE", "PAYS"]].drop duplicates
orm.db _session:

C clients.values:
Client(id client C telephone = ¢ ville = ¢ pays
C
orm.commit
Exception e:
"*** ERREUR DE TRANSACTION :", e, '**x*!

On remarque que l'initialisation des clients ne porte que sur les attributs élémentaires
(la liste des achats n'est pas initialisée explicitement).

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

2025/12/31 16:38 5/12 Organiser et transformer les données : Pony ORM

Un certain nombre d'erreurs de transaction se produisent. pouvez vous deviner leur
origine?

Affichage

Pour afficher la liste de tous les clients (et non le schéma de la classe Client), il faut faire appel a la
méthode select () qui effectue une lecture dans la base avant I'affichage.

Client.select().show

On peut également afficher les clients un par un a I'aide leur index (ici le nom du magasin)
Client["Land of Toys Inc.
Client["Land of Toys Inc."].id client
Client["Land of Toys Inc."].ville
Client["Land of Toys Inc."].pays
Client["Land of Toys Inc."].achats

On notera que la liste des achats est vide (les commandes n'ont pas encore été saisies)

L'appel a la méthode select () permet de sélectionner les clients selon la valeur d'un ou plusieurs
attributs. Cette sélection passe par une fonction anonyme lambda:

requéte = Client.select C : C.pays "France"
et on affiche le résultat:

requéte.show

Remarque : une requéte se comporte comme un itérateur sur les objets:

for ¢ in requéte:
print(c.id client, c.ville, c.pays)

Transfert des données produits

Les produits sont insérés de la méme facon que les clients:

produits = datal["CODE PRODUIT", "TYPE PRODUIT"
"PRIX UNITAIRE"]].drop duplicates
orm.db _session:
p produits.values:

Produit(code produit p type produit p prix unitaire

orm.commit

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

Exception e:
"*x* ERREUR DE TRANSACTION :", e, '**x*!

Un certain nombre d'erreurs de transaction se produisent. Pouvez vous deviner leur

@ origine?
Question subsidiaire : comment modifier le schéma de départ pour les supprimer.

Affichage du contenu de la classe

Produit.select().show
Uniquement les 10 premiers:

orm.show(Produit.select
Affichage d'un produit particulier

Produit['S10 1678

Produit|'S10 1678'].type produit
Produit|'S10 1678']|.prix unitaire
Produit['S10 1678'].ventes

Transfert des données ventes

Pour créer les commandes, il faut ici définir deux références :

 une référence au client qui a effectué la commande
e une référence au produit commandé

qui sont des objets définis précédemment lors de I'insertion des données client et des donnés produit.
lIs correspondent donc a des entrées de leurs classes respectives, indexes par leur identifiant
(id client et code produit).

ventes = data[["NUM COMMANDE", "QUANTITE", "MONTANT", "MOIS", "ANNEE"
"CLIENT", "CODE PRODUIT"]].drop duplicates
orm.db _session:
% ventes.values:

client = Client|v

produit Produit|v

Commande (num_commande = int(v
code produit = v
quantité = int(v

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

2025/12/31 16:38 7/12 Organiser et transformer les données : Pony ORM
montant float(v|[2
mois int(v(3
année = int(v[4
client client
produit produit
orm.commit
Exception e:

“#** ERREUR DE TRANSACTION :*"

Affichage

Commande.select().show

Commande[10118,"S700 3505"

e Pkxxk!

‘Montant :', Commande[10118,"S700 3505"].montant
'Quantité :', Commande[10118,"S700 3505"].quantité
'Année :', Commande[10118,"S700 3505"].année

'Mois :', Commande[10118,"S700 3505"].mois

'Client :', Commande[10118,"S700 3505"].client
"Produit :', Commande[10118,"S700 3505"].produit

Exemples de requéte

requéte = Commande.select C c.montant 10000
r requéte:
r.num _commande, r.quantité, r.mois, r.année, r.client, r.produit
Ou plus simplement :
requéte.show
Autre écriture
requéte orm.select(c C Commande c.montant 10000

Mise a jour automatique des contenus

Maintenant que les commandes on été entrées dans la base, la liste des achats est a présent

renseignée pour chaque client de la classe Client:
Client["Land of Toys Inc."].achats

ou:

Client["Land of Toys Inc."

.achats.select().show

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

Et |a liste des ventes est de méme renseignée pour chaque produit de la classe Produit:

Produit|['S10 1678'].ventes

Modifier les valeurs

Produit['S12 1108']|.prix _unitaire
orm.commit

Supprimer un objet

Produit['S12 1108'].delete
orm.commit

A faire

Pour chaque client, calculer le montant total des achats

Pour chaque produit, calculer le montant total des ventes

Corriger le champ pays pour les clients nord-américains : si le pays vaut
("United States", le remplacer par "USA"

3 Créez un nouveau client

Faites-lui commander plusieurs produits (n'oubliez pas de définir le numéro de
commande!!)

« Vérifiez que les nouvelles commandes apparaissent bien dans la liste des ventes
de la classe Produits . Magique, non?

Création d'un schéma de données

¢ Le but est maintenant de définir un modele ORM pour le schéma de données du TD1. Reprenez
votre programme de gestion de I'animalerie (TD 1 et 2). Le but est de remplacer les fichiers
json par une base de données sqlite en utilisant les fonctionnalités de pony pour lire et mettre a
jour les données.

e La premiere étape consiste a définir le modele de données. Pour conserver les données de
I'animalerie, on utilisera le gestionnaire de bases de données sqlite. Avant toute chose, il faut
définir un schéma de données conforme au modele relationnel

On part du schéma entité/association suivant:

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

2025/12/31 16:38 9/12 Organiser et transformer les données : Pony ORM

id_animal
etat .
type |-::! egu]gg‘n:nent
,\} race disponibilite
[1,1] [O,N]
Animal utilise Equipement

A FAIRE :

« définissez le schéma relationnel correspondant (sans oublier les clés étrangéeres)

e traduisez le schéma relationnel en schéma UML

» Ajoutez le nouveau script data model.py a votre projet, et définissez le schéma de données a
I'aide des fonctions de pony:

pony orm
db orm.Database

Equipement(db.Entity):

Animal (db.Entity):

 Vous devez maintenant remplir la base a I'aide des données contenues dans animal.json et
équipement.json. Pour ce faire, utilisez le script suivant (il ne devra étre exécuté quune seule
fois).

json

pony orm
data model Equipement, Animal, db

db.bind(provider='sqlite', filename='animalerie.db', create db=True
db.generate mapping(create tables=True

équipement data 'équipement.json’
open(équipement data, "r" f:
équipement dict = json.load(f
id équip équipement dict:
disponibilité = équipement dict!id équip]|"DISPONIBILITE"
orm.db_session:

Equipement (id équip-id équip, disponibilité-disponibilité
orm.commit

id équip, "already exists in database"

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie-_ea.png?id=public%3Aappro-s7%3Atd3
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8803e1&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2Fanimal.json
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a89c35&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2F%C3%A9quipement.json

Last update: 2023/10/16 11:10

public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

animal data ‘animal.json'
open(animal data, "r" f:
animal dict = json.load(f

id animal animal dict:

état = animal dict[id animal
type = animal dict|[id animal
race = animal dict/id animal
lieu = animal dict/id animal

orm.db session:

"ETAT"
"TYPE"
"RACE"
“LIEU"

Animal(id animal=id animal

état=état

type-type
race=race

lieu=Equipement | lieu

orm.commit

id animal

"already exists in database"

* Vous disposez maintenant d'une base de données animalerie.db dans le répertoire du
projet. Cette base contient I'ensemble des informations nécessaires pour gérer I'animalerie.
Vous devez maintenant reprendre votre programme de gestion de l'animalerie (TD 1 et 2) et
modifier modele. py en utilisant les fonctionnalités de pony pour lire et mettre a jour les

données.

Voici a quoi doit ressembler le début de modele. py :

pony orm
data model

liste états ‘affamé', 'fatigué’

db.bind(provider="'sqlite', filename

db.generate mapping

lit état(id animal
orm.db_session:

Animal/id animal
None

lit lieu(id animal
orm.db session:

Animal/id animal

Equipement, Animal, db

'repus’

'endormi’

'animalerie.db'

.état

.lieu

https://wiki.centrale-med.fr/informatique/

Printed on 2025/12/31 16:38

2025/12/31 16:38 11/12 Organiser et transformer les données

: Pony ORM

None

vérifie disponibilité(id équipement

Complétez le code de maniere a valider le fichier de tests suivant :

modele
controleur
data model orm, Equipement, Animal

test lit etat():
modele.lit état('Tac' ‘affamé'
modele.lit état('Bob' None

orm.db session
test lit lieu():
modele.lit lieu('Tac' Equipement|'litiere’
modele.lit lieu('Bob' None

test vérifie disponibilité

modele.vérifie disponibilité('litiere’ ‘libre’
modele.vérifie disponibilité('roue’ 'occupé'
modele.vérifie disponibilité('nintendo’ None

orm.db session
test cherche occupant

Animal| 'Totoro' modele.cherche occupant('roue’
Animal| 'Tac' modele.cherche occupant('litiere’
Animal| 'Tac' modele.cherche occupant('mangeoire’

modele.cherche occupant('nintendo"’

test change état
modele.change état('Totoro', 'fatigué'
modele.lit état('Totoro' ‘fatiqué'’
modele.change état('Totoro', 'excité comme un pou'
modele.lit état('Totoro' 'fatigué'
modele.change état('Truc', 'fatigué'
modele.lit état('Truc' None

orm.db session
test change lieu

modele.change lieu('Totoro', 'roue’

modele.lit lieu('Totoro' Equipement| 'roue’
modele.change lieu('Totoro', 'nid’

modele.lit lieu('Totoro' Equipement| ' roue'’
modele.change lieu('Totoro', 'nintendo'’

modele.lit lieu('Totoro' Equipement| 'roue’
modele.change lieu('Muche', 'litiere'

modele.lit lieu('Muche’ None

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

orm.db session
test nourrir

modele.vérifie disponibilité('mangeoire’ 'libre’
modele.lit état('Tic' ‘affamé':
controleur.nourrir('Tic"'
modele.vérifie disponibilité('mangeoire’ ‘occupé’
modele.lit état('Tic' 'repus'’
modele.lit lieu('Tic' Equipement| 'mangeoire’
controleur.nourrir('Pocahontas'
modele.lit état('Pocahontas’ ‘endormi’
modele.lit lieu('Pocahontas’ Equipement| 'nid’
controleur.nourrir('Tac'
modele.lit état('Tac' ‘affamé'
modele.lit lieu('Tac' Equipement|'litiere’
controleur.nourrir('Bob'
modele.lit état('Bob' None
modele.lit lieu('Bob' None
modele.vérifie disponibilité('mangeoire’ 'occupé'

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

Last update: 2023/10/16 11:10

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

	[Organiser et transformer les données : Pony ORM]
	[Organiser et transformer les données : Pony ORM]
	Organiser et transformer les données : Pony ORM
	Initialisation

	Chargement des données avec Pandas
	Lecture des données
	Création du schéma de données
	Classe Client
	Classe Produit
	Classe Commande
	Pour afficher

	Association à un gestionnaire de BD
	Mode debug

	Transfert des données Client
	Affichage

	Transfert des données produits
	Affichage du contenu de la classe
	Affichage d'un produit particulier

	Transfert des données ventes
	Affichage
	Exemples de requête
	Autre écriture

	Mise à jour automatique des contenus
	Modifier les valeurs
	Supprimer un objet

	Création d'un schéma de données

