
2025/12/31 16:38 1/12 Organiser et transformer les données : Pony ORM

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Organiser et transformer les données : Pony ORM

Ici nous apprenons à utiliser la librairie Pony pour la manipulation et la mise en forme des données.

Pour installer les librairie pandas et pony, vous devez utfuiliser un gestionnaire d'installation.

Attention la librairie pony n'est pas disponible sur les depots d'Anaconda. Il est
préférable d'utiliser l'installeur pip en ligne de commande:

$ python -m pip install pandas pony

La librairie Pony ORM est un gestionnaire de persistance qui permet la mise en correspondance entre
les objets d'un programme et les valeurs d'une base de données, pour assurer leur conservation
d'une session à l'autre.

Pony effectue toutes les opérations de sauvegarde de manière transparente. La création et la mise à
jour des objets persistants s'accompagne automatiquement d'opérations de lecture/écriture vers la
base de donnée. Les données sont donc conservées sans appel explicite à des requêtes SQL.

Initialisation

from pony import orm

db = orm.Database()

Chargement des données avec Pandas

L'utilisation de données structurées dans un programme Python nécessite de faire appel à des
librairies spécialisées. Nous utiliserons ici la librairie pandas qui sert à la mise en forme et à l'analyse
des données.

import numpy as np
import pandas

On considère une série d’enregistrements concernant des ventes réalisées par un exportateur de
véhicules miniatures. Pour chaque vente, il entre dans son registre de nombreuses informations :

nom de la société cliente
nom et prénom du contact, adresse, téléphone
nombre d'unités vendues
prix de vente
etc…

Ces informations sont stockées dans un fichier au format ‘csv’ (comma separated values) :
ventes_new.csv. Téléchargez ce fichier et copiez-le dans votre répertoire de travail.

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=305db6&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fventes_new.csv

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

Dans un premier temps, regardez son contenu avec un editeur de texte (geany, gedit ou autre…).
La première ligne contient les noms des attributs (NUM_COMMANDE, QUANTITE,…). Les ligne suivantes
contiennent les valeurs d’attributs correspondant à une vente donnée. En tout plus de 2000 ventes
sont répertoriées dans ce fichier.

Ouvrez-le maintenant à l’aide d’un tableur (par exemple localc). Les données sont maintenant
“rangées” en lignes et colonnes pour faciliter la lecture.

Déplacez le fichier ventes_new.csv dans votre répertoire de travail.

Lecture des données

Les données sont au format csv, on utilise:

pandas.read_csv. Voir dataframes pandas. Pandas permet également de lire les données au
format xls et xlsx (Excel).

with open('ventes_new.csv', encoding='utf-8') as f:
 data = pandas.read_csv(f)
print(data)

avec data une structure de données de type DataFrame

Création du schéma de données

Nous définissons ici trois schémas de classes correspondant aux ensembles d'entités Client,
Commande et Produit.

Client(id_client, téléphone, ville, pays)
Commande(num_commande, code_produit, id_client, quantité, montant, mois, année)
Produit(code_produit, type_produit, prix_unitaire)

Les clés étrangères de la table des commande définissent deux relations de un à plusieurs :

une relation de un à plusieurs entre un produit et des commandes,
et une relation de un à plusieurs entre un client et des commandes.

Attention, dans la table commande, code_produit est également une clé étrangère

Dans un modèle ORM, les relations de un à plusieurs se traduisent par des attributs de type liste ou
ensemble :

A un client correspond un ensemble de commandes
A un produit correspond un ensemble de commandes
A une commande correspond un client et un produit

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=b6a56a&media=http%3A%2F%2Fwww.xavierdupre.fr%2Fapp%2Fensae_teaching_cs%2Fhelpsphinx%2Fnotebooks%2Ftd2a_cenonce_session_1.html#dataframe-pandas

2025/12/31 16:38 3/12 Organiser et transformer les données : Pony ORM

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Classe Client

Les classes sont définies ici comme des schémas de données.

La classe Client hérite de la classe générique Entity. Les attributs des objets obéissent à une
définition parmi quatre définitions possibles :

attribut clé primaire : PrimaryKey
attribut requis (la valeur doit être renseignée) : Required
attribut facultatif: Optional
relation de un à plusieurs : Set

class Client(db.Entity):
 id_client = orm.PrimaryKey(str)
 telephone = orm.Required(str)
 ville = orm.Required(str)
 pays = orm.Required(str)
 achats = orm.Set('Commande')

Classe Produit

class Produit(db.Entity):
 code_produit = orm.PrimaryKey(str)
 type_produit = orm.Required(str)
 prix_unitaire = orm.Required(float)
 ventes = orm.Set('Commande')

Classe Commande

Dans la classe Commande, il n'y a pas de clé étrangère (comme dans le modèle relationnel) mais :

un attribut de type Client qui lie la commande au client qui a effectié la commande
un attribut de type Produit qui lie la commande au produit commandé

class Commande(db.Entity):
 num_commande = orm.Required(int)
 code_produit = orm.Required(str)
 orm.PrimaryKey(num_commande, code_produit)
 quantité = orm.Required(int)
 montant = orm.Required(float)
 mois = orm.Required(int)
 année = orm.Required(int)
 client = orm.Required(Client)
 produit = orm.Required(Produit)

Pour afficher

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

La commande show est une commande d'affichage à tout faire. Elle permet ici de vérifier le schéma
de la classe.

orm.show(Client)

Association à un gestionnaire de BD

Les schémas de données définis dans les classes peuvent être implémentés dans différents
gestionnaires de bases de données.

Nous choisissons ici le gestionnaire sqlite, ce qui évite de définir une connexion un serveur distant. La
base de données est ici émulée en mémoire centrale (pour les besoins de l'exercice, les données
n'ont pas besoin d'être conservées)

db.bind(provider='sqlite', filename='ventes.db', create_db=True)

Mode debug

Le mode debug permet de voir les échanges avec la base de données.

orm.set_sql_debug(True)

La commande generate_mapping définit l"appariement entre les objets et la base de données. Cela
correspond ici à la création de trois tables.

db.generate_mapping(create_tables=True)

Transfert des données Client

Les données sont lues dans le dataFrame data sur les quatre attributs définis et insérées dans la
base à l'aide du constructeur de la classe Client.

clients = data[["CLIENT", "TELEPHONE", "VILLE", "PAYS"]].drop_duplicates()
with orm.db_session:
 for c in clients.values:
 try:
 Client(id_client = c[0], telephone = c[1], ville = c[2], pays =
c[3])
 orm.commit()
 except Exception as e:
 print("*** ERREUR DE TRANSACTION :", e, '***')

On remarque que l'initialisation des clients ne porte que sur les attributs élémentaires
(la liste des achats n'est pas initialisée explicitement).

2025/12/31 16:38 5/12 Organiser et transformer les données : Pony ORM

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Un certain nombre d'erreurs de transaction se produisent. pouvez vous deviner leur
origine?

Affichage

Pour afficher la liste de tous les clients (et non le schéma de la classe Client), il faut faire appel à la
méthode select() qui effectue une lecture dans la base avant l'affichage.

Client.select().show()

On peut également afficher les clients un par un à l'aide leur index (ici le nom du magasin)

print(Client["Land of Toys Inc."])
print(Client["Land of Toys Inc."].id_client)
print(Client["Land of Toys Inc."].ville)
print(Client["Land of Toys Inc."].pays)
print(Client["Land of Toys Inc."].achats)

On notera que la liste des achats est vide (les commandes n'ont pas encore été saisies)

L'appel à la méthode select() permet de sélectionner les clients selon la valeur d'un ou plusieurs
attributs. Cette sélection passe par une fonction anonyme lambda:

requête = Client.select(lambda c : c.pays == "France")

et on affiche le résultat:

requête.show()

Remarque : une requête se comporte comme un itérateur sur les objets:

for c in requête:
 print(c.id_client, c.ville, c.pays)

Transfert des données produits

Les produits sont insérés de la même façon que les clients:

produits = data[["CODE_PRODUIT", "TYPE_PRODUIT",
"PRIX_UNITAIRE"]].drop_duplicates()
with orm.db_session:
 for p in produits.values:
 try:
 Produit(code_produit = p[0], type_produit = p[1], prix_unitaire
= p[2])
 orm.commit()

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

 except Exception as e:
 print("*** ERREUR DE TRANSACTION :", e, '***')

Un certain nombre d'erreurs de transaction se produisent. Pouvez vous deviner leur
origine?

Question subsidiaire : comment modifier le schéma de départ pour les supprimer.

Affichage du contenu de la classe

Produit.select().show()

Uniquement les 10 premiers:

orm.show(Produit.select()[:10])

Affichage d'un produit particulier

print (Produit['S10_1678'])
print (Produit['S10_1678'].type_produit)
print (Produit['S10_1678'].prix_unitaire)
print (Produit['S10_1678'].ventes)

Transfert des données ventes

Pour créer les commandes, il faut ici définir deux références :

une référence au client qui a effectué la commande
une référence au produit commandé

qui sont des objets définis précédemment lors de l’insertion des données client et des donnés produit.
Ils correspondent donc à des entrées de leurs classes respectives, indexes par leur identifiant
(id_client et code_produit).

ventes = data[["NUM_COMMANDE", "QUANTITE", "MONTANT", "MOIS", "ANNEE",
"CLIENT", "CODE_PRODUIT"]].drop_duplicates()
with orm.db_session:
 for v in ventes.values:
 try:
 client = Client[v[5]]
 produit = Produit[v[6]]
 Commande(num_commande = int(v[0]),
 code_produit = v[6],
 quantité = int(v[1]),

2025/12/31 16:38 7/12 Organiser et transformer les données : Pony ORM

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 montant = float(v[2]),
 mois = int(v[3]),
 année = int(v[4]),
 client = client,
 produit = produit)
 orm.commit()
 except Exception as e:
 print("*** ERREUR DE TRANSACTION :", e, '***')

Affichage

Commande.select().show()

print(Commande[10118,"S700_3505"])
print('Montant :', Commande[10118,"S700_3505"].montant)
print('Quantité :', Commande[10118,"S700_3505"].quantité)
print('Année :', Commande[10118,"S700_3505"].année)
print('Mois :', Commande[10118,"S700_3505"].mois)
print('Client :', Commande[10118,"S700_3505"].client)
print('Produit :', Commande[10118,"S700_3505"].produit)

Exemples de requête

requête = Commande.select(lambda c : c.montant > 10000)
for r in requête:
 print(r.num_commande, r.quantité, r.mois, r.année, r.client, r.produit)

Ou plus simplement :

requête.show()

Autre écriture

requête = orm.select(c for c in Commande if c.montant > 10000)

Mise à jour automatique des contenus

Maintenant que les commandes on été entrées dans la base, la liste des achats est à présent
renseignée pour chaque client de la classe Client:

print(Client["Land of Toys Inc."].achats)

ou:

Client["Land of Toys Inc."].achats.select().show()

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

Et la liste des ventes est de même renseignée pour chaque produit de la classe Produit:

print (Produit['S10_1678'].ventes)

Modifier les valeurs

Produit['S12_1108'].prix_unitaire = 100
orm.commit()

Supprimer un objet

Produit['S12_1108'].delete()
orm.commit()

A faire

Pour chaque client, calculer le montant total des achats
Pour chaque produit, calculer le montant total des ventes
Corriger le champ pays pour les clients nord-américains : si le pays vaut
"United States", le remplacer par "USA"
Créez un nouveau client
Faites-lui commander plusieurs produits (n'oubliez pas de définir le numéro de
commande!!)
Vérifiez que les nouvelles commandes apparaissent bien dans la liste des ventes
de la classe Produits . Magique, non?

Création d'un schéma de données

Le but est maintenant de définir un modèle ORM pour le schéma de données du TD1. Reprenez
votre programme de gestion de l'animalerie (TD 1 et 2). Le but est de remplacer les fichiers
json par une base de données sqlite en utilisant les fonctionnalités de pony pour lire et mettre à
jour les données.

La première étape consiste à définir le modèle de données. Pour conserver les données de
l'animalerie, on utilisera le gestionnaire de bases de données sqlite. Avant toute chose, il faut
définir un schéma de données conforme au modèle relationnel

On part du schéma entité/association suivant:

https://wiki.centrale-med.fr/informatique/public:appro-s7:td1

2025/12/31 16:38 9/12 Organiser et transformer les données : Pony ORM

WiKi informatique - https://wiki.centrale-med.fr/informatique/

A FAIRE :

définissez le schéma relationnel correspondant (sans oublier les clés étrangères)
traduisez le schéma relationnel en schéma UML
Ajoutez le nouveau script data_model.py à votre projet, et définissez le schéma de données à
l'aide des fonctions de pony:

from pony import orm

db = orm.Database()

class Equipement(db.Entity):
 ...

class Animal(db.Entity):
 ...

Vous devez maintenant remplir la base à l'aide des données contenues dans animal.json et
équipement.json. Pour ce faire, utilisez le script suivant (il ne devra être exécuté quune seule
fois).

import json

from pony import orm
from data_model import Equipement, Animal, db

db.bind(provider='sqlite', filename='animalerie.db', create_db=True)
db.generate_mapping(create_tables=True)

équipement_data = 'équipement.json'
with open(équipement_data, "r") as f:
 équipement_dict = json.load(f)
 for id_équip in équipement_dict:
 disponibilité = équipement_dict[id_équip]["DISPONIBILITÉ"]
 with orm.db_session:
 try:
 Equipement(id_équip=id_équip, disponibilité=disponibilité)
 orm.commit()
 except:
 print(id_équip, "already exists in database")

https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie-_ea.png?id=public%3Aappro-s7%3Atd3
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8803e1&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2Fanimal.json
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a89c35&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2F%C3%A9quipement.json

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

 pass

animal_data = 'animal.json'
with open(animal_data, "r") as f:
 animal_dict = json.load(f)
 for id_animal in animal_dict:
 état = animal_dict[id_animal]["ETAT"]
 type = animal_dict[id_animal]["TYPE"]
 race = animal_dict[id_animal]["RACE"]
 lieu = animal_dict[id_animal]["LIEU"]
 with orm.db_session:
 try:
 Animal(id_animal=id_animal,
 état=état,
 type=type,
 race=race,
 lieu=Equipement[lieu])
 orm.commit()
 except:
 print(id_animal, "already exists in database")
 pass

Vous disposez maintenant d'une base de données animalerie.db dans le répertoire du
projet. Cette base contient l'ensemble des informations nécessaires pour gérer l'animalerie.
Vous devez maintenant reprendre votre programme de gestion de l'animalerie (TD 1 et 2) et
modifier modele.py en utilisant les fonctionnalités de pony pour lire et mettre à jour les
données.

Voici à quoi doit ressembler le début de modele.py :

from pony import orm
from data_model import Equipement, Animal, db

liste_états = ['affamé', 'fatigué', 'repus', 'endormi']

db.bind(provider='sqlite', filename='animalerie.db')
db.generate_mapping()

def lit_état(id_animal):
 with orm.db_session:
 try:
 return Animal[id_animal].état
 except:
 return None

def lit_lieu(id_animal):
 with orm.db_session:
 try:
 return Animal[id_animal].lieu
 except:

2025/12/31 16:38 11/12 Organiser et transformer les données : Pony ORM

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 return None

def vérifie_disponibilité(id_équipement):
 ...

Complétez le code de manière à valider le fichier de tests suivant :

import modele
import controleur
from data_model import orm, Equipement, Animal

def test_lit_etat():
 assert modele.lit_état('Tac') == 'affamé'
 assert modele.lit_état('Bob') == None

@orm.db_session
def test_lit_lieu():
 assert modele.lit_lieu('Tac') == Equipement['litière']
 assert modele.lit_lieu('Bob') == None

def test_vérifie_disponibilité():
 assert modele.vérifie_disponibilité('litière') == 'libre'
 assert modele.vérifie_disponibilité('roue') == 'occupé'
 assert modele.vérifie_disponibilité('nintendo') == None

@orm.db_session
def test_cherche_occupant():
 assert Animal['Totoro'] in modele.cherche_occupant('roue')
 assert Animal['Tac'] in modele.cherche_occupant('litière')
 assert Animal['Tac'] not in modele.cherche_occupant('mangeoire')
 assert modele.cherche_occupant('nintendo') == []

def test_change_état():
 modele.change_état('Totoro', 'fatigué')
 assert modele.lit_état('Totoro') == 'fatigué'
 modele.change_état('Totoro', 'excité comme un pou')
 assert modele.lit_état('Totoro') == 'fatigué'
 modele.change_état('Truc', 'fatigué')
 assert modele.lit_état('Truc') == None

@orm.db_session
def test_change_lieu():
 modele.change_lieu('Totoro', 'roue')
 assert modele.lit_lieu('Totoro') == Equipement['roue']
 modele.change_lieu('Totoro', 'nid')
 assert modele.lit_lieu('Totoro') == Equipement['roue']
 modele.change_lieu('Totoro', 'nintendo')
 assert modele.lit_lieu('Totoro') == Equipement['roue']
 modele.change_lieu('Muche', 'litière')
 assert modele.lit_lieu('Muche') == None

Last update: 2023/10/16 11:10 public:appro-s7:td3 https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/31 16:38

@orm.db_session
def test_nourrir():
 if modele.vérifie_disponibilité('mangeoire') == 'libre' and
modele.lit_état('Tic') == 'affamé':
 controleur.nourrir('Tic')
 assert modele.vérifie_disponibilité('mangeoire') == 'occupé'
 assert modele.lit_état('Tic') == 'repus'
 assert modele.lit_lieu('Tic') == Equipement['mangeoire']
 controleur.nourrir('Pocahontas')
 assert modele.lit_état('Pocahontas') == 'endormi'
 assert modele.lit_lieu('Pocahontas') == Equipement['nid']
 controleur.nourrir('Tac')
 assert modele.lit_état('Tac') == 'affamé'
 assert modele.lit_lieu('Tac') == Equipement['litière']
 controleur.nourrir('Bob')
 assert modele.lit_état('Bob') == None
 assert modele.lit_lieu('Bob') == None
 assert modele.vérifie_disponibilité('mangeoire') == 'occupé'

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

Last update: 2023/10/16 11:10

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td3

	[Organiser et transformer les données : Pony ORM]
	[Organiser et transformer les données : Pony ORM]
	Organiser et transformer les données : Pony ORM
	Initialisation

	Chargement des données avec Pandas
	Lecture des données
	Création du schéma de données
	Classe Client
	Classe Produit
	Classe Commande
	Pour afficher

	Association à un gestionnaire de BD
	Mode debug

	Transfert des données Client
	Affichage

	Transfert des données produits
	Affichage du contenu de la classe
	Affichage d'un produit particulier

	Transfert des données ventes
	Affichage
	Exemples de requête
	Autre écriture

	Mise à jour automatique des contenus
	Modifier les valeurs
	Supprimer un objet

	Création d'un schéma de données

