2025/12/26 05:25 1/11 Les Pandas, les Poneys et la Persistance des données

Les Pandas, les Poneys et la Persistance des données

Ici nous apprenons a utiliser plusieurs librairies de manipulation et de mise en forme des données.
Liens utiles :

* Notebook a partir de PyCharm :

o https://www.jetbrains.com/help/pycharm/using-ipython-notebook-with-product.html
e Pandas :

o http://www.python-simple.com/python-pandas/panda-intro.php
e Pony :

o https://docs.ponyorm.com/firststeps.html

Pour installer les librairies pandas et pony :

$ pip3 install pandas

$ pip3 install pony

Les notebooks Jupyter

Ce travail sera réalisé a I'aide de "notebooks" fonctionnant sur I'interpréteur "jupyter". Les notebooks
permettent d'écrire et d'exécuter des scripts python a I'aide d'un simple navigateur web. Les résultats
d'exécution sont conservés et peuvent étre retrouvés d'une session a l'autre.

* Si vous étes sous Windows ou Mac, utilisez I'environnement des notebooks fourni par Anaconda

e Sur un environnement Unix, Ouvrez un terminal dans votre dossier de travail et tapez :

$ jupyter-notebook

Ceci ouvre un onglet de l'interpréteur jupyter dans votre navigateur.

e Créez un notebook vierge via le menu new -> python 3
¢ Ou bien cliquez sur le notebook sur lequel vous souhaitez travailler.

Pour utiliser un notebook, voir :

1. What is the Jupyter notebook?
2. Notebook basics

3. Running code

4. Working with Markdown cells

.\"‘)

Une vidéo en anglais

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://www.jetbrains.com/help/pycharm/using-ipython-notebook-with-product.html
http://www.python-simple.com/python-pandas/panda-intro.php
https://docs.ponyorm.com/firststeps.html
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=0c07fe&media=http%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fjupyter%2Fnotebook%2Fblob%2Fmaster%2Fdocs%2Fsource%2Fexamples%2FNotebook%2FWhat%2520is%2520the%2520Jupyter%2520Notebook.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=543cc5&media=http%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fjupyter%2Fnotebook%2Fblob%2Fmaster%2Fdocs%2Fsource%2Fexamples%2FNotebook%2FNotebook%2520Basics.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a07091&media=http%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fjupyter%2Fnotebook%2Fblob%2Fmaster%2Fdocs%2Fsource%2Fexamples%2FNotebook%2FRunning%2520Code.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=7f1b41&media=http%3A%2F%2Fnbviewer.jupyter.org%2Fgithub%2Fjupyter%2Fnotebook%2Fblob%2Fmaster%2Fdocs%2Fsource%2Fexamples%2FNotebook%2FWorking%2520With%2520Markdown%2520Cells.ipynb
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a54bda&media=https%3A%2F%2Fwww.youtube.com%2Fembed%2FlmoNmY-cmSI

Last update: 2020/11/24 21:33 public:appro-s7:td6 https://wiki.centrale-med.fr/informatique/public:appro-s7:td6

Analyser les données : Pandas

L'utilisation de données structurées dans un programme Python nécessite de faire appel a des
librairies spécialisées. Nous utiliserons ici la librairie pandas qui sert a la mise en forme et a I'analyse
des données.

numpy np
matplotlib.pyplot plt
pandas

On considere une série d'enregistrements concernant des ventes réalisées par un exportateur de
véhicules miniatures. Pour chaque vente, il entre dans son registre de nombreuses informations :

nom de la société cliente

nom et prénom du contact, adresse, téléphone
nombre d'unités vendues

prix de vente

e etc...

Ces informations sont stockées dans un fichier au format ‘csv’ (comma separated values) :
ventes new.csv. Téléchargez ce fichier et copiez-le dans votre répertoire de travail.

Dans un premier temps, regardez son contenu avec un editeur de texte (geany, gedit ou autre...).
La premiere ligne contient les noms des attributs (NUM_COMMANDE, QUANTITE,...). Les ligne suivantes
contiennent les valeurs d’attributs correspondant a une vente donnée. En tout plus de 2000 ventes
sont répertoriées dans ce fichier.

Ouvrez-le maintenant a I'aide d’un tableur (par exemple localc). Les données sont maintenant
“rangées” en lignes et colonnes pour faciliter la lecture.

Déplacez le fichier ventes new. csv dans votre répertoire de travail.

Lecture des données

Les données sont au format csv, on utilise:

e pandas.read csv. Voir dataframes pandas. Pandas permet également de lire les données au
format x1s et x1sx (Excel).

open('ventes new.csv' f:
data = pandas.read csv(f
data

avec data une structure de données de type DataFrame

Testez les commandes suivantes :

len(data

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/26 05:25


https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=305db6&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fventes_new.csv
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=b6a56a&media=http%3A%2F%2Fwww.xavierdupre.fr%2Fapp%2Fensae_teaching_cs%2Fhelpsphinx%2Fnotebooks%2Ftd2a_cenonce_session_1.html#dataframe-pandas

2025/12/26 05:25 3/11

Les Pandas, les Poneys et la Persistance des données

data.columns
Syntaxe de type dictionnaire :
data["VILLE"
data[ ["VILLE", "PAYS"
Autre syntaxe :
data.VILLE
data.VILLE.head
PS : Ca marche aussi avec la syntaxe "dictionnaire":

data["VILLE"].head

pour afficher les lignes

Tout tableau de données possede un index:
data.index

(il s'agit ici d'une indexation automatique par les entiers)

Les données peuvent étre accédées par leur index:

data. loc

Modifier les données

Les prix augmentent de 1 euro :
data.PRIX UNITAIRE +
data.MONTANT = data.PRIX UNITAIRE

data.MONTANT *= data.QUANTITE
data.MONTANT

Sélectionner les données

selection dataldata.MONTANT

I'objet selection se comporte comme un nouveau dataframe ne contenant que les entrées

respectant le critére de sélection.

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2020/11/24 21:33 public:appro-s7:td6 https://wiki.centrale-med.fr/informatique/public:appro-s7:td6

Pour faciliter l'interprétation du résultat, on n'affiche le résulat que sur un sous-ensemble d'attributs:

selection[["MONTANT", "DATE_COMMANDE", "VILLE", "PAYS", "NOM CONTACT", "PRE
NOM CONTACT"

Sélection multi-critéres :

selection datal (data.MONTANT & (data.PAYS 'France'
selection[["MONTANT", "DATE COMMANDE",6 "VILLE", "PAYS", "NOM CONTACT", "PRE
NOM CONTACT"

<!-- === QOpérateurs d'agrégation == * usage : statistique sur les données *
principe : * opérateur d’'aggrégation : * tout type de données : comptage
(attention aux doublons) <code python> print(data["VILLE"].count())
print(data["VILLE"].drop duplicates().count()) </code> * données
quantitatives (et non qualitatives) : somme, moyenne, ecart-type (count, sum,
mean, std, min, max, ..) <code python> print(data["MONTANT"].mean())
print(data["MONTANT"].std()) </code> === Affichage et figures === Un
histogramme simple <code python> data["MONTANT"].hist(bins=25) plt.show()
</code> <code python> data.QUANTITE.hist(by = data.TYPE PRODUIT, bins=25,
figsize = (15,8)) </code> === Calcul par groupes === Pandas offre la
possibilité d'organiser et analyser les données par //groupe//. Le
découpage en groupe repose sur des valeurs d'attributs (il y a autant de
groupes qu'il y a de valeurs différentes pour l'attribut considéré) Par
exemple si on prend le type de produit: <code python> groupes selon produit =
data.groupby('TYPE PRODUIT') </code> ici l'objet ''groupes selon produit''
définit les groupes sur le tableau de données selon la valeur de
"'TYPE_PRODUIT'"'. Pour visualiser les groupes: <code python>
print(groupes selon produit.groups) </code> On peut ensuite effectuer des
mesures et calculs par groupes. Par exemple : <code python>

nb ventes par produit = groupes selon produit.size() </code> l'objet
''nb_ventes par produit'' est une liste indexée par les valeurs d'attributs
(ici 'Bateaux', 'Avions' etc...) <code python>
print(nb_ventes par produit.index) </code> On peut bien sir 1'afficher :
<code python> print(nb ventes par produit) </code> Les fonctions sum(),
mean(), max(), min() etc... s'appliquent sur des valeurs quantitatives, ici
"'MONTANT'' ou ''QUANTITE'"'. Exemple : le chiffre d'affaires par produit
(somme des montants) : <code python> CA par produit =

groupes selon produit.MONTANT.sum() </code> Enfin on peut également
effectuer une sélection sur les valeurs calculées (1'équivalent du ''HAVING''
en SQL). Exemples: * les produits générant un chiffre d'affaires > 1000000:
<code python> print(CA par produit[CA par produit > 1000000]) </code> * le
produit générant le plus haut chiffre d'affaires: <code python>

print(CA par produit[CA par produit == max(CA par produit)]) </code> Les
groupes peuvent étre définis sur des criteres multiples : <code python>
groupes pays ville = data.groupby(['PAYS', 'VILLE']) </code> === Affichage
et figures === <code python> grouped = data.groupby(data.TYPE PRODUIT)
print(grouped.NUM COMMANDE.count()) plt.figure()

grouped.NUM COMMANDE.count().plot(kind = "bar", figsize = (5,3))

plt.figure() grouped.NUM COMMANDE.count().plot(kind = "pie", figsize = (5,3))
</code>  Pour aller plus loin : *

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/26 05:25



2025/12/26 05:25 5/11 Les Pandas, les Poneys et la Persistance des données

{{http://www.xavierdupre.fr/app/ensae teaching cs/helpsphinx/notebooks/td2a c
enonce session 1l.html|Une introduction tres détaillée aux DataFrames (en
Francais)}} *
{{http://synesthesiam.com/posts/an-introduction-to-pandas.html#getting-data-o
ut|Introduction to Pandas (en anglais)}} <note tip> ** A faire ** * Trouvez
le nombre de ventes, le nombre de clients référencés (sans doublons), et le
nombre de références produits (sans doublons). * Afficher le nombre de client
et le chiffre d'affaires (somme des montants) * par pays * par pays puis par
état * par pays puis par état puis par ville * Donnez le nombre de ventes en
fonction du mois pour 1'année 2004 * Donnez le chiffre d’affaires par année
et trimestre pour les ventes réalisées aux états unis * Quelle est la
catégorie de véhicules la plus vendue? </note> === Tables Pivot ===
Agrégation des données selon différents attributs/dimensions exemple : on
représente les ventes selon (1) la dimension géographique et (2) la dimension
temporelle <code python> T = pandas.pivot table(data, values = 'MONTANT',
index = ['PAYS'], columns = ['ANNEE'], aggfunc=np.sum) print(T) </code>

<code python> T.plot(kind='bar', subplots = 'True') plt.show() </code>
Evolution des ventes au cours de l'année pour la France seulement: <code
python> selection = data[data.PAYS == "France"] T2 =

pandas.pivot table(selection, values = 'MONTANT', index = ['ANNEE'], columns
= ['VILLE'], aggfunc=np.sum) print(T2) T2.plot(kind="'bar', subplots =
'True') plt.show() </code> <note tip> ** A faire ** * Donnez le nombre de
ventes (''aggfunc = np.size'') par catégorie pour chaque année et trimestre.
Choisissez le graphique le plus adapté pour représenter les données. * Donnez
le chiffre d'affaires par pays, pour chaque catégorie de produits. Choisissez
le graphique le plus adapté pour représenter les données. </note> -->

Organiser et transformer les données : Pony ORM

La librairie Pony ORM est un gestionnaire de persistance qui permet la mise en correspondance entre
les objets d'un programme et les valeurs d'une base de données, pour assurer leur conservation
d'une session a l'autre.

Pony effectue toutes les opérations de sauvegarde de maniere transparente. La création et la mise a
jour des objets persistants s'accompagne automatiquement d'opérations de lecture/écriture vers la
base de donnée. Les données sont donc conservées sans appel explicite a des requétes SQL.

Initialisation

pony orm

db orm.Database
Création du schéma de données

Nous définissons ici trois schémas de classes correspondant aux ensembles d'entités Client,
Commande et Produit.

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2020/11/24 21:33 public:appro-s7:td6 https://wiki.centrale-med.fr/informatique/public:appro-s7:td6

e Client(id_client, téléphone, ville, pays)
 Commande(num_commande, quantité, montant, mois, année, id_client, code_ produit)
e Produit(code produit, type_produit, prix_unitaire)

Les clés étrangeres de la table des commande définissent deux relations de un a plusieurs :

« une relation de un a plusieurs entre un produit et des commandes,
e et une relation de un a plusieurs entre un client et des commandes.

Dans un modele ORM, les relations de un a plusieurs se traduisent par des attributs de type liste ou
ensemble :

e A un client correspond un ensemble de commandes
e A un produit correspond un ensemble de commandes
e A une commande correspond un client et un produit

Classe Client

Les classes sont définies ici comme des schémas de données.

La classe Client hérite de la classe générique Entity. Les attributs des objets obéissent a une
définition parmi quatre définitions possibles :

attribut clé primaire : PrimaryKey

attribut requis (la valeur doit étre renseignée) : Required
attribut facultatif: Optional

relation de un a plusieurs : Set

Client(db.Entity):
id client orm.PrimaryKey(str
telephone = orm.Required(str
ville = orm.Required(str
pays orm.Required(str
achats orm.Set ('Commande'’

Classe Produit

Produit(db.Entity
code produit orm.PrimaryKey(str
type produit = orm.Required(str
prix unitaire = orm.Required(float
ventes orm.Set ('Commande'

Classe Commande

Dans la classe Commande, il n'y a pas de clé étrangere (comme dans le modele relationnel) mais :

e un attribut de type Client qui lie la commande au client qui a effectué la commande

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/26 05:25



2025/12/26 05:25 7/11 Les Pandas, les Poneys et la Persistance des données

e un attribut de type Produit qui lie la commande au produit commandé

Commande (db.Entity
num_commande = orm.PrimaryKey(int
quantité = orm.Required(int
montant orm.Required(float
mois = orm.Required(int
année = orm.Required(int
client orm.Required(Client
produit orm.Required(Produit

Pour afficher

La commande show est une commande d'affichage a tout faire. Elle permet ici de vérifier le schéma
de la classe.

orm.show(Client

Association a un gestionnaire de BD

Les schémas de données définis dans les classes peuvent étre implémentés dans différents
gestionnaires de bases de données.

Nous choisissons ici le gestionnaire sqlite, ce qui évite de définir une connexion un serveur distant. La
base de données est ici émulée en mémoire centrale (pour les besoins de I'exercice, les données
n'ont pas besoin d'étre conservées)

db.bind(provider='sqlite', filename=':memory:"

Mode debug

Le mode debug permet de voir les échanges avec la base de données.
orm.set sql debug(True

La commande generate mapping définit |"appariement entre les objets et la base de données. Cela
correspond ici a la création de trois tables.

db.generate mapping(create tables=True

Transfert des données Client

Les données sont lues dans le dataFrame data sur les quatre attributs définis et insérées dans la
base a l'aide du constructeur de la classe Client.

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2020/11/24 21:33 public:appro-s7:td6 https://wiki.centrale-med.fr/informatique/public:appro-s7:td6

On vérifie avant l'insertion que le client n'est pas déja présent dans la base a I'aide du
test:

@ Client.get(id_client = c.CLIENT None:

clients data[["CLIENT", "TELEPHONE", "VILLE", "PAYS"]|].drop duplicates

i range(len(clients
C clients.iloc|1i
Client.get(id client = c.CLIENT None:

Client(id client C.CLIENT, telephone = c.TELEPHONE, ville
c.VILLE, pays c.PAYS
orm.commit

On remarque que l'initialisation des clients ne porte que sur les attributs élémentaires
(la liste des achats n'est pas initialisée explicitement).

Affichage

Pour afficher la liste de tous les clients (et non le schéma de la classe Client), il faut faire appel a la
méthode select () qui effectue une lecture dans la base avant I'affichage.

Client.select().show
On peut également afficher les clients un par un a I'aide leur index (ici le nom du magasin)
Client["Land of Toys Inc."
Client["Land of Toys Inc."].id client
Client["Land of Toys Inc."].ville
Client["Land of Toys Inc."].pays
Client["Land of Toys Inc."].achats

On notera que la liste des achats est vide (les commandes n'ont pas encore été saisies)

L'appel a la méthode select () permet de sélectionner les clients selon la valeur d'un ou plusieurs
attributs. Cette sélection passe par une fonction anonyme lambda:

requéte = Client.select C : C.pays "France"
Une requéte se comporte comme un itérateur sur les objets:

for ¢ in requéte:
print(c.id client, c.ville, c.pays)

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/26 05:25



2025/12/26 05:25 9/11 Les Pandas, les Poneys et la Persistance des données

Transfert des données produits

Les produits sont insérés de la méme facon que les clients:

produits = datal["CODE PRODUIT", "TYPE PRODUIT"
"PRIX UNITAIRE"]].drop duplicates

i range(len(produits
p = produits.iloc|i
Produit.get(code produit = p.CODE PRODUIT None:

Produit(code produit p.CODE PRODUIT, type produit
p.TYPE PRODUIT, prix unitaire p.PRIX UNITAIRE
orm.commit

Affichage du contenu de la classe
Produit.select().show
Affichage d'un produit particulier

Produit|['S10 1678

Produit|'S10 1678'].type produit
Produit['S10 1678']|.prix _unitaire
Produit['S10 1678'].ventes

Transfert des données ventes

Pour créer les commandes, il faut ici définir deux références :

e une référence au client qui a effectué la commande
e une référence au produit commandé

qui sont des objets définis précédemment lors de I'insertion des données client et des donnés produit.
lIs correspondent donc a des entrées de leurs classes respectives, indexes par leur identifiant
(id client et code produit).

ventes data[["NUM COMMANDE", "QUANTITE", "MONTANT", "MOIS", "ANNEE"
"CLIENT", "CODE PRODUIT"]].drop duplicates

i range (len(ventes
v = ventes.iloc|1i
Commande.get (num_commande = int(v.NUM COMMANDE None:

client Client|[v.CLIENT

produit Produit[v.CODE PRODUIT

Commande (num_commande = int(v.NUM COMMANDE
quantité = int(v.QUANTITE
montant float (v.MONTANT
mois = int(v.MOIS

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2020/11/24 21:33

public:appro-s7:td6 https://wiki.centrale-med.fr/informatique/public:appro-s7:td6

année
client
produit
orm.commit
Affichage
Commande.select().show
Commande
'"Montant :', Commande
"Quantité :', Commande
"Année :', Commande
'Mois :', Commande
'Client :', Commande
'"Produit :', Commande

Exemples de requéte

requéte
r requéte:

Commande.select

r.num_commande

Ou plus simplement :

requéte.show

Autre écriture

requéte

Mise a jour automatique des contenus

orm.select(c

C

int (v.ANNEE
client

produit

.montant
.quantité
.année

.mois

r.quantité

Commande

.client
.produit

c : c.montant

r.mois, r.année, r.client, r.produit

c.montant

Maintenant que les commandes on été entrées dans la base, la liste des achats est a présent
renseignée pour chaque client de la classe Client:

Client|"Land
Client|"Land
Client["Land
Client["Land
Client["Land

of Toys
of Toys
of Toys
of Toys
of Toys

Inc.
Inc.
Inc.
Inc.
Inc.

.1d client
.ville

.pays
.achats

Et la liste des ventes est de méme renseignée pour chaque produit de la classe Produit:

Produit['S10 1678

https://wiki.centrale-med.fr/informatique/

Printed on 2025/12/26 05:25



2025/12/26 05:25 11/11 Les Pandas, les Poneys et la Persistance des données

Produit|'S10 1678'].type produit
Produit|['S10 1678']|.prix unitaire
Produit['S10 1678'].ventes

Modifier les valeurs

Produit|['S12 1108']|.prix_unitaire
orm.commit

Supprimer un objet

Produit['S12 1108'].delete
orm.commit

A faire

e Pour chaque client, calculer le montant total des achats

e Pour chaque produit, calculer le montant total des ventes

e Corriger le champ pays pour les clients nord-américains : si le pays vaut
"United States", le remplacer par "USA"

'\) ¢ En profiter pour supprimer les doublons de la classe Client

e Créez un nouveau client

e Faites-lui commander plusieurs produits (n'oubliez pas de définir le numéro de
commande!!)

« Vérifiez que les nouvelles commandes apparaissent bien dans la liste des ventes
de la table Produits . Magique, non?

Si vous avez le temps

 Définissez un modele ORM pour le schéma de données du TD1.
* Remplissez la base a I'aide des données contenues dans animal.json et équipement.json
* Effectuez quelques requétes pour vérifier que tout marche bien

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:td6

Last update: 2020/11/24 21:33

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/public:appro-s7:td1
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8803e1&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2Fanimal.json
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a89c35&media=http%3A%2F%2Fedauce.perso.ec-m.fr%2Fvisible%2F%C3%A9quipement.json
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td6

	[Les Pandas, les Poneys et la Persistance des données]
	Les Pandas, les Poneys et la Persistance des données
	Les notebooks Jupyter
	Analyser les données : Pandas
	Lecture des données
	pour afficher les lignes
	Modifier les données
	Sélectionner les données

	Organiser et transformer les données : Pony ORM
	Initialisation
	Création du schéma de données
	Classe Client
	Classe Produit
	Classe Commande
	Pour afficher

	Association à un gestionnaire de BD
	Mode debug

	Transfert des données Client
	Affichage

	Transfert des données produits
	Affichage du contenu de la classe
	Affichage d'un produit particulier

	Transfert des données ventes
	Affichage
	Exemples de requête
	Autre écriture

	Mise à jour automatique des contenus
	Modifier les valeurs
	Supprimer un objet

	Si vous avez le temps



