2026/02/04 01:02 1/5 5. Les modeles dans Django

5. Les modeles dans Django

Maintenant, nous aimerions créer quelque chose qui permet de stocker les articles de notre blog. Mais
avant de pouvoir faire ¢a, il faut raisonner sur des objets.

Les objets
Grace a la programmation orientée objets, on modélise les choses ainsi que la maniere dont elles

interagissent entre elles.

Du coup, c'est quoi un objet ? C'est une collection de propriétés et d'actions. Un exemple devrait vous
permettre d'y voir un peu plus clair.

Pour ca, il faut répondre a la question : qu'est-ce qu'un article de blog ? Quelles propriétés devrait-il
avoir ?

Pour commencer, notre billet de blog doit avoir du texte : il a bien du contenu et un titre, n'est-ce pas
? Et puis, ce serait bien de savoir aussi qui I'a écrit. On a donc besoin d'un auteur. Enfin, on aimerait
aussi savoir quand l'article a été écrit et publié.

Billet

auteur
creation_date
publication date

Quel genre d'actions pourrions-nous faire sur un article de blog ? Un bon début serait d'avoir une
méthode qui permet de publier le billet.

On va donc avoir besoin d'une méthode "publier".

Voila, nous avons une idée de ce que nous avons besoin. Allons modéliser tout ¢a dans Django!
Les modeles dans Django

Nous allons maintenant pouvoir créer un modele Django pour notre billet de blog.

Un modele Django est un type particulier d'objet : il est sauvegardé dans la base de données. Une
base de données est une collection de données. C'est a cet endroit que I'on stocke toutes les
informations au sujet des utilisateurs, des billets de blog, etc. Pour stocker nos données, nous allons
utiliser une base de données SQLite. C'est la base de données par défaut dans Django. Elle sera
largement suffisante pour ce que nous voulons faire.

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2023/11/05 23:16  public:appro-s7:td_web:modeles https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web:modeles

Créer une application

Pour éviter le désordre, nous allons créer une application séparée a I'intérieur de notre projet. Prenez
I'habitude de bien tout organiser dés le début. Afin de créer une application, nous avons besoin
d'exécuter la commande suivante dans notre console (prenez garde a bien étre dans le dossier
"djangology" ou se trouve le fichier "manage.py") :

Mac OS X and Linux:

~/djangology$ python manage.py startapp blog

Windows:

C:\Users\Name\djangology> python manage.py startapp blog

Vous pouvez voir qu'un nouveau dossier "blog" a été créé et qu'il contient différents fichiers. Les
dossiers et fichiers liés a votre projet doivent maintenant étre organisés selon cette structure :

djangology
| -- blog
| | -- admin.py
| |-- apps.py
| |-- init .py
| | -- migrations
|| |-- _init_.py
| | -- models.py
| | -- tests.py
| T-- views.py
|-- db.sqlite3
| -- manage.py
| -- mysite
| |-- init .py
| | -- settings.py
| |-- urls.py

T-- wsgi.py

AN

-- requirements.txt

Apres avoir créé une nouvelle application, vous devez dire a Django de ['utiliser. Nous faisons cela via
le fichier "mysite/settings.py". Ouvrez-le dans votre éditeur. Trouvez la section "INSTALLED APPS" et
ajoutez une ligne "'blog.apps.BlogConfig'," juste avant "]". La section doit maintenant ressembler a
ceci:

mysite/settings.py

INSTALLED APPS
‘django.contrib.admin'
‘django.contrib.auth’
‘django.contrib.contenttypes’
‘django.contrib.sessions’
‘django.contrib.messages’

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 01:02



2026/02/04 01:02 3/5 5. Les modeles dans Django

‘django.contrib.staticfiles"
'blog.apps.BlogConfig’

Créer un modele de blog post
Le fichier "blog/models.py" permet de définir les objets que nous appelons des "modeles". C'est a cet
endroit que nous allons définir ce que c'est qu'un billet de blog.

Ouvrez le fichier "blog/models.py" dans votre éditeur, supprimez tout ce qui s'y trouve et copiez-y le
morceau de code suivant :

blog/models.py

django.conf settings
django.db models
django.utils timezone

Billet (models.Model
author = models.ForeignKey(settings.AUTH USER MODEL
on_delete-models.CASCADE
title = models.CharField(max_ length
text = models.TextField
created date = models.DateTimeField(default=timezone.now
published date = models.DateTimeField(blank=True, null=True

publish(self
self.published date = timezone.now

self.save
~ str  (self
self.title

Vérifiez que vous avez bien utilisé deux tirets bas (_) autour de "str". C'est une convention
fréguemment utilisée en Python qui porte méme un petit nom en anglais : "dunder", pour "double-
underscore"

Ce gros morceau de code a l'air effrayant, mais, ne vous inquiétez pas : nous allons vous expliquer ce
gue signifie chacune de ces lignes!

class Billet(models.Model):

e C'est cette ligne qui permet de définir notre modele (ce qui est un "object").

e Le mot clef spécial "class" permet d'indiquer que nous sommes en train de définir un objet.
 "Billet" est le nom de notre modele. Vous pouvez lui donner un autre nom (mais vous ne pouvez
pas utiliser des caracteres spéciaux ou accentués et insérer des espaces). Le nom d'une classe

commence toujours par une majuscule.
* "models.Model" signifie que "Billet" est un modele Django. Comme ca, Django sait qu'il doit
I'enregistrer dans la base de données.

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2023/11/05 23:16  public:appro-s7:td_web:modeles https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web:modeles

Maintenant, nous allons pouvoir définir les propriétés dont nous parlions au début de ce chapitre :
"title (titre)", "text (texte)", "created date (date de création)", "published _date (date de publication)"
et "author (auteur)". Pour cela, nous allons avoir besoin de définir le type de chaque champ (Est-ce
que c'est du texte? Un nombre ? Une date ? Une relation a un autre objet, comme un objet utilisateur
par exemple ?)

e models.CharField - Cela nous permet de définir un champ texte avec un nombre limité de
caracteres.

e models.TextField - Cela nous permet de définir un champ texte sans limite de caracteres.
Parfait pour le contenu d'un billet de blog, non ?

e models.DateTimeField - Détinit que le champ en question est une date ou une heure.

e models.ForeignKey - C'est un lien vers un autre modele.

Si vous voulez en savoir plus sur les modeles Django, n'hésitez pas a consulter la documentation
officielle de Django (fields).

Et sinon, c'est quoi def publish(self): ? Il s'agit de notre méthode "publish" dont nous parlions
tout a I'neure. Nous créons une fonction/méthode qui porte le nom "publish". Vous pouvez changer le
nom de la méthode si vous le souhaitez. La regle de nommage est d'utiliser des minuscules et des
tirets bas a la place des espaces. Par exemple, une méthode qui calcule le prix moyen d'un produit
pourrait s'appeler "calcul_prix_moyen".

Les méthodes renvoient ("return") souvent quelque chose. C'est le cas de la méthode "str". Dans
notre tutoriel, lorsque nous appellerons la méthode "str()", nous allons obtenir du texte (string) avec
un titre de Billet.

Créer des tables pour votre modele dans votre base de données

La derniere étape pour cette section est d'ajouter notre nouveau modele a notre base de données.
Tout d'abord, nous devons signaler a Django que nous venons de créer notre modeéle (nous venons de
le terminer !). Allez sur votre terminal et tapez "python manage.py makemigrations blog". Le résultat
devrait ressembler a ca :

~/djangology$ python manage.py makemigrations blog
Migrations for 'blog':

blog/migrations/0001 initial.py:

- Create model Billet

Remarque : N'oubliez pas de sauvegarder les fichiers que vous modifiez. Dans le cas contraire, votre
ordinateur exécute la version précédente, ce qui pourrait vous donner des messages d'erreur
inattendus.

Django vient de nous préparer un fichier de migration que nous allons pouvoir appliquer des
maintenant a notre base de données. Pour cela, tapez python manage.py migrate blog.
Normalement, vous devrez voir ceci s'afficher dans votre console :

~/djangology$ python manage.py migrate blog
Operations to perform:
Apply all migrations: blog

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 01:02


https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=7e7ca1&media=https%3A%2F%2Fdocs.djangoproject.com%2Fen%2F2.2%2Fref%2Fmodels%2Ffields%2F#field-types

2026/02/04 01:02 5/5 5. Les modeles dans Django

Running migrations:
Applying blog.0001 initial... OK

Notre modele Billet est maintenant intégré a la base de données. Ce serait bien de voir a quoi il
ressemble réellement ! Pour ca, il va falloir attaquer la section suivante ! Au boulot !

6. Administration

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link: .
https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web:modeles .;

Last update: 2023/11/05 23:16

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web:django-admin
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web:modeles

	[5. Les modèles dans Django]
	5. Les modèles dans Django
	Les objets
	Les modèles dans Django
	Créer une application
	Créer un modèle de blog post
	Créer des tables pour votre modèle dans votre base de données




