2026/02/04 11:20 1/10 Autonomie 1 : Une galerie en Django

Autonomie 1 : Une galerie en Django

En vous basant sur I'ensemble des TD précédents, vous devez a présent programmer un site web en
Django qui reproduit les fonctionnalités de I'animalerie vue dans le cadre du modele MVC. Attention,
vous devez cette fois-ci personnaliser le modele de données pour I'adapter a un univers de votre
choix.

Exemples d'univers :

¢ Jeu de role

e Tamagotchi

Pet shop

Pocket Monster
Aquarium

Elevage d'escargots
e Course hippique

e Equipe de foot
 Athletes

e etc.

Vous pouvez bien s(r conserver la structure de base qui est d'avoir un ensemble de créatures et/ou
de personnages, et un ensemble de lieux avec des fonctions différentes (par exemple, pour un centre
d'entrainement : terrain de foot, cantine, salle de muscu, dortoir). Il peut y avoir des variantes : Pour
une maison des poupées il peut y avoir plusieurs chambres, une pieéce commune, un jardin et une
terrasse. Laissez libre cours a votre imagination.

Les personnages passent par différents états au cours de la journée en fonction des lieux qu'ils
visitent.

Rappel

Reprenez cette structure de données de type Personnage - Equipement utilisée
dans les TD précédents

.\) id_perso

etat S
attribut id_équipement
type disponibilite
[1.1] [O,N]
Personnage Equipement

Indications

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/public:appro-s7:td1
https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie-_ea_-_projet.png?id=public%3Aappro-s7%3Atd_web_hamsters

Last update:

2024/11/02 public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

16:58

Créez un projet 'playground' et reprenez toutes les étapes 1 a 15 du tutoriel précédent avec le
modele suivant, en remplaccant "Animal" par "Character" pour étre plus général.

model.py

django.db models

Equipement (models.Model

id equip = models.CharField(max_length
disponibilite = models.CharField(max length

photo = models.CharField(max_length
~ str (self
self.id equip

Character(models.Model

id character = models.CharField(max length

etat = models.CharField(max_ length
type models.CharField(max_ length
race = models.CharField(max_ length
photo = models.CharField(max length
lieu = models.ForeignKey(Equipement
~ str (self
self.id character

Vous deviez obtenir une interface simple de ce type:

primary_ key-=True

primary key=True

on delete=models.CASCADE

https://wiki.centrale-med.fr/informatique/

Printed on 2026/02/04 11:20

https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web

2026/02/04 11:20 3/10 Autonomie 1 : Une galerie en Django

Bienvenue i I'animalerie - Mozilla Firefox - O %
<[© Jard | CSSZer | W Forn | https://t | £ Emn | Nouvel | = Hor | Bienn X | > 4+ w

« > C @@ ©U ©127001 80% e ¥ | Q Rechercher Lmne » =

Bienvenue a l'animalerie!

Tic e el
Tac e e
Patrick e e
Totoro Frdom "
Pocahontas e fere

Il est bien s(r possible d'améliorer les choses en utilisant des fonctions de mise en page plus évoluées

La mise en page du site repose sur ['utilisation de fichiers de style (css) ainsi que de
composants javascript de type :

e Web Front, option S7 (F. Brucker)
 bootstrap

o et : w3school
e materialize
o (voir aussi ce tutoriel).

Vous pouvez exploiter les photos qui sont définies dans les attributs du modele pour obtenir par
exemple:

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=f228b0&media=https%3A%2F%2Ffrancoisbrucker.github.io%2Fcours_informatique%2Fcours%2Fweb%2F
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=6132b2&media=https%3A%2F%2Fgetbootstrap.com%2F
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=d68496&media=https%3A%2F%2Fwww.w3schools.com%2Fbootstrap5%2Findex.php
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=aee286&media=https%3A%2F%2Fmaterializecss.com
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=51b8b2&media=https%3A%2F%2Fopenclassrooms.com%2Ffr%2Fcourses%2F3936801-composez-des-interfaces-utilisateurs-en-material-design%2F4392371-utilisez-le-framework-materialize-css

Last update:
2024/11/02 public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114
16:58

Eichier FEdition Affichage Historique Marque-pages Qutils Aide - 8o x
Animalerie x | +
« => C QO DO 127.0.0.1:8000 6% 1¥ Q Rechercher P ¢ 6 O =
Animaux
Tic Totoro

‘Race : lomia Tace : lamia face : hamaler Tace : ili pika Hace : oppoaum

Llaf : repous o : faligue {lai - affame il : affame {lal : endormi
Tiew : mangecire T : rows Tieu : litiere Tieu : litiere Tiew = nid

lifiere

Disponibililé : Tibre Disponibililé - Decupe Disponibilils - Decgpe

Docupd par : Tac Decupe par : Pocahonlas Decupe par « Tic

Formulaires Django

(repris du tutoriel django_forms)

La derniere chose que nous voulons faire sur notre site web, c'est créer une maniere de mettre a jour
I'etat des personnages. Les formulaires (forms) vont nous permettre de rendre le site dynamique !

Comme toutes les choses importantes dans Django, les formulaires ont leur propre fichier :
forms.py.

Nous allons devoir créer un fichier avec ce nom dans notre dossier blog.

playground
L— forms.py

Ouvrez maintenant ce fichier dans I'éditeur de code et tapez le code suivant :
from django import forms
from .models import Character

class MoveForm(forms.ModelForm):

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=4baf0a&media=https%3A%2F%2Ftutorial.djangogirls.org%2Ffr%2Fdjango_forms%2F

2026/02/04 11:20 5/10 Autonomie 1 : Une galerie en Django

Meta:
model Character
fields 'lieu’

Tout d'abord, nous avons besoin d'importer les formulaires Django (from django import forms),
puis notre modele Character (from .models import Character).

Comme vous I'avez probablement deviné, MoveForm est le nom de notre formulaire. Nous avons
besoin d'indiquer a Django que ce formulaire est un ModelForm (pour que Django fasse certaines
choses automatiquement pour nous). Pour cela, nous utilisons forms.ModelForm.

Ensuite, nous avons la class Meta qui nous permet de dire a Django quel modele il doit utiliser pour
créer ce formulaire (model = Character).

Enfin, nous précisions quel's sont le:s champ-s qui doivent figurer dans notre formulaire. Dans notre
cas, nous souhaitons que seul le lieu apparaisse dans notre formulaire.

Et voila, c'est tout ! Tout ce qu'il nous reste a faire, c'est d'utiliser ce formulaire dans une vue et de
I'afficher dans un template.

Nous allons donc une nouvelle fois suivre le processus suivant et créer : un lien vers la page, une URL,
une vue et un template.

Lien vers une page contenant le formulaire

Il est temps d'ouvrir playground/templates/playground/base.html dans I'éditeur de code et
ajouter un lien vers la vue character detail.

<a href="{% url 'character detail' id character=character.id character
%y">{{ character.id character }}

URL

Ouvrez le fichier
playground/urls.py

dans I'éditeur de code et mettez ceci:

django.urls path
views
urlpatterns
path('', views.character list, name='character list'

path('character/<str:id character>/', views.character detail
name="'character detail'

path('character/<str:id character>/7?<str:message>"
views.character detail, name='character detail mes'

WiKi informatique - https://wiki.centrale-med.fr/informatique/

http://december.com/html/4/element/a.html
http://december.com/html/4/element/a.html

Last update:
2024/11/02 public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114
16:58

La vue character_detail

Ouvrez maintenant le fichier playground/views. py dans I'éditeur de code et ajoutez les lignes
suivantes avec celles du from qui existent déja :

django.shortcuts render, get object or 404, redirect
.forms MoveForm
.models Character, Equipement

Create your views here.
character list(request
characters Character.objects.filter
render(request, 'playground/character list.html' ‘characters':
characters

character detail(request, id character
character = get object or 404(Character, id character=id character
lieu character. lieu
form=MoveForm
render(request
‘playground/character _detail.html'
‘character': character, 'lieu': lieu, 'form': form

Afin de pouvoir créer un nouveau formulaire Move, nous avons besoin d'appeler la fonction
MoveForm() et de la passer au template. Nous reviendrons modifier cette vue plus tard, mais pour
I'instant, créons rapidement un template pour ce formulaire.

Template

Nous avons a présent besoin de créer un fichier character detail.html dans le dossier
playground/templates/playground et de I'ouvrir dans I'éditeur de code. Afin que notre
formulaire fonctionne, nous avons besoin de plusieurs choses :

1. Nous avons besoin d'afficher le formulaire. Pour cela, nous n'avons qu'a utiliser
form.as_uk

2. La ligne précédente va avoir besoin d'étre entourée des balises HTML <form
method="POST">..</form>.

3. Nous avons besoin d'un bouton Valider. Nous allons le créer a I'aide d'un bouton HTML :
Valider.

4. Enfin, nous devons ajouter {% csrf token %} juste apres <form ..>. C'est tres important car
c'est ce qui va permettre de sécuriser votre formulaire ! Si vous oubliez ce détail, Django se
plaindra lorsque vous essaierez de sauvegarder le formulaire:

Ok, voyons maintenant a quoi devrait ressembler le HTML contenu dans le fichier

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

2026/02/04 11:20 7/10 Autonomie 1 : Une galerie en Django

character detail.html:

{% extends 'playground/base.html' %}
{% load static %}
{% block content %}
<div class="page-header">
<hl>
{{ character.id character }}
</hl>
<form method="POST" class="post-form"“>{% csrf token %}
 Changer : {{ form.as ul }}
<button type="submit" class="btn btn-outline-light">0K</button>
Back
</form>
</div>

{% endblock %}

Rafraichissons la page ! Et voila : le formulaire s'affiche sous la forme d'une liste d'options!

Mais attendez une minute! Lorsque vous sélectionnez une option, que se passera-t-il? Rien!
Retournons a notre vue.

Sauvegarder le contenu du formulaire

Ouvrez a nouveau blog/views.py dans I'éditeur de code. Actuellement, post new n'est composé
que des lignes de code suivantes :

character _detail(request, id character):
character = get object or 404(Character, id character=id character
form=MoveForm
render(request
‘playground/character _detail.html'
‘character': character, 'lieu': lieu, 'form': form

Lorsque nous envoyons notre formulaire, nous revenons a la méme vue. Cependant, nous récupérons
les données dans request, et plus particulierement dans request.POST. Vous rappelez-vous
comment dans le fichier HTML, notre définition de la variable form avait la méthode method=P0ST?
Tous les champs du formulaire se trouvent maintenant dans request.POST. Veillez a ne pas
renommer POST en quoi que ce soit d'autre : la seule autre valeur autorisée pour method est GET.
Malheureusement, nous n'avons pas le temps de rentrer dans les détails aujourd'hui.

Donc dans notre vue nous avons deux situations différentes a gérer : la premiere quand on accede a
la page pour la premiere fois et nous voulons un formulaire vide, et la seconde quand on revient a la
vue avec les données que I'on a saisies dans le formulaire. Pour gérer ces deux cas, nous allons
utiliser une condition

request.method "POST":

WiKi informatique - https://wiki.centrale-med.fr/informatique/

http://december.com/html/4/element/div.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/div.html

Last update:
2024/11/02 public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

16:58

form MoveForm

[l faut maintenant remplir a I'endroit des pointillés [..]. Si method contient POST alors on veut
construire le MoveForm avec les données du formulaire, n'est-ce pas ? Nous allons le faire comme
cela : </html>

form = MoveForm(request.POST, instance-=character

La prochaine étape est de vérifier que le formulaire a été rempli correctement (tous les champs
obligatoires ont été remplis et aucune valeur incorrecte n'a été envoyée). Nous allons faire ¢a
en utilisant form.1is valid().

Testons donc si notre formulaire est valide et, si c'est le cas, sauvegardons-le !

form.is valid
ancien lieu = get object or 404 (Equipement
id equip=character.lieu.id equip
ancien lieu.disponibilite "libre"
ancien lieu.save
form.save
nouveau lieu = get object or 404 (Equipement
id equip=character.lieu.id equip
nouveau lieu.disponibilite "occupé"
nouveau lieu.save

En gros, nous effectuons deux choses ici : nous sauvegardons le nouvel état du personnage grace a
form. save et nous mettons a jour I'occupation des lieux. Rappelez vous, tout déplacement du
personnage s'acccompagne d'un changement d'occupation. Nous devons également modifier les
lieux. ancien lieu.save() et nouveau lieu.save() sauvegarderont les changements. Et voila,
la mise a jour est enregistrée !

Enfin, ce serait génial si nous pouvions tout de suite aller a la page character detail avec le
contenu que nous venons de créer. Pour cela, nous avons besoin d'importer une derniéere chose :

Maintenant, nous allons ajouter la ligne qui signifie "aller a la page character detail pourle
changement qui vient d'étre enregistreé.

redirect('character detail', id character=id character

character detail est le nom de la vue ou nous voulons aller.

Voyons a quoi ressemble maintenant notre vue ?

character detail(request, id character
character = get object or 404(Character, id character=id character
form=MoveForm
form.is valid
ancien lieu = get object or 404 (Equipement
id equip=character.lieu.id equip

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

2026/02/04 11:20 9/10 Autonomie 1 : Une galerie en Django

ancien_ lieu.disponibilite "libre"
ancien lieu.save
form.save
nouveau lieu = get object or 404 (Equipement
id equip=character.lieu.id equip
nouveau lieu.disponibilite "occupé"
nouveau lieu.save
redirect('character detail', id character=id character

form MoveForm
render(request
‘playground/character detail.html'
‘character': character, 'lieu': lieu, 'form': form

Voyons si ca marche. Allez a I'adresse http://127.0.0.1:8000/character/Tic/, selectionnez
un nouveau lieu, sauvegardez ... et voila ! La mise a jour est prise en compte !

Modele complet

Il ne reste plus qu'a raffiner le modele afin qu'il corresponde aux contraintes définies en début
d'énoncé.

* Si le lieu de destination n'est pas libre, alors le changement ne doit pas étre accepté. Il ne faut
donc pas sauvegarder I'état du personnage immédiatement. Cela est possible grace a I'option :

form.save(commit=False

e Avec cette option, le lieu est mis a jour dans I'objet character mais pas dans la base de
données! Il est alors possible de tester si le nouveau lieu est bien libre en regardant si
character.lieu.disponibilite est "libre".

e Sj c'est bon, alors effectuez les changements et n'oubliez pas de sauvegarder avec
character.save().

* Si ce n'est pas le cas, alors les changements ne doivent pas étre enregistrés.

» N'oubliez pas non plus: le changement de lieu a pour conséquence un changement d'état, qui
passe par exemple d' "affamé" a "repus" lorsqu'on le déplace sur la mangeoire. Reprenez
toutes les conditions et tenez en compte pour la mise a jour du personnage.

e |l est bien s(r possible de reprendre en I'adaptant la structure de contréleur vue au TD1.

Les messages

Lorsqu'un changement n'est pas autorisé, il est préférable d'afficher un message d'avertissement. Le
message transmis comme parametre au template character detail.html. Le cadre sera activé
uniquement si le message est non vide. Pensez a modifier les paramétres d'appel du template dans
views.py.

{% if message != ''%}
<div class="alert alert-danger" role="alert">
{{message}}
</div>

WiKi informatique - https://wiki.centrale-med.fr/informatique/

http://127.0.0.1:8000/character/Tic/
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html

Last update:
2024/11/02 public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114
16:58

{% endif %}

Et normalement c'est tout ! Félicitations ! :)

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

Last update: 2024/11/02 16:58

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

	[Autonomie 1 : Une galerie en Django]
	Autonomie 1 : Une galerie en Django
	Indications
	model.py

	Formulaires Django
	Lien vers une page contenant le formulaire
	URL
	La vue character_detail
	Template
	Sauvegarder le contenu du formulaire
	Modèle complet
	Les messages

