
2026/02/04 11:20 1/10 Autonomie 1 : Une galerie en Django

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Autonomie 1 : Une galerie en Django

En vous basant sur l'ensemble des TD précédents, vous devez à présent programmer un site web en
Django qui reproduit les fonctionnalités de l'animalerie vue dans le cadre du modèle MVC. Attention,
vous devez cette fois-ci personnaliser le modèle de données pour l'adapter à un univers de votre
choix.

Exemples d'univers :

Jeu de rôle
Tamagotchi
Pet shop
Pocket Monster
Aquarium
Elevage d'escargots
Course hippique
Equipe de foot
Athlètes
etc.

Vous pouvez bien sûr conserver la structure de base qui est d'avoir un ensemble de créatures et/ou
de personnages, et un ensemble de lieux avec des fonctions différentes (par exemple, pour un centre
d'entrainement : terrain de foot, cantine, salle de muscu, dortoir). Il peut y avoir des variantes : Pour
une maison des poupées il peut y avoir plusieurs chambres, une pièce commune, un jardin et une
terrasse. Laissez libre cours à votre imagination.

Les personnages passent par différents états au cours de la journée en fonction des lieux qu'ils
visitent.

Rappel

Reprenez cette structure de données de type Personnage – Equipement utilisée
dans les TD précédents

Indications

https://wiki.centrale-med.fr/informatique/public:appro-s7:td1
https://wiki.centrale-med.fr/informatique/_detail/public:appro-s7:mie-_ea_-_projet.png?id=public%3Aappro-s7%3Atd_web_hamsters

Last update:
2024/11/02
16:58

public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

Créez un projet 'playground' et reprenez toutes les étapes 1 à 15 du tutoriel précédent avec le
modèle suivant, en remplaçcant "Animal" par "Character" pour être plus général.

model.py

from django.db import models

class Equipement(models.Model):
 id_equip = models.CharField(max_length=100, primary_key=True)
 disponibilite = models.CharField(max_length=20)
 photo = models.CharField(max_length=200)
 def __str__(self):
 return self.id_equip

class Character(models.Model):
 id_character = models.CharField(max_length=100, primary_key=True)
 etat = models.CharField(max_length=20)
 type = models.CharField(max_length=20)
 race = models.CharField(max_length=20)
 photo = models.CharField(max_length=200)
 lieu = models.ForeignKey(Equipement, on_delete=models.CASCADE)
 def __str__(self):
 return self.id_character

Vous deviez obtenir une interface simple de ce type:

https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web

2026/02/04 11:20 3/10 Autonomie 1 : Une galerie en Django

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Il est bien sûr possible d'améliorer les choses en utilisant des fonctions de mise en page plus évoluées

La mise en page du site repose sur l'utilisation de fichiers de style (css) ainsi que de
composants javascript de type :

Web Front, option S7 (F. Brucker)
bootstrap

et : w3school
materialize

(voir aussi ce tutoriel).

Vous pouvez exploiter les photos qui sont définies dans les attributs du modèle pour obtenir par
exemple:

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=f228b0&media=https%3A%2F%2Ffrancoisbrucker.github.io%2Fcours_informatique%2Fcours%2Fweb%2F
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=6132b2&media=https%3A%2F%2Fgetbootstrap.com%2F
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=d68496&media=https%3A%2F%2Fwww.w3schools.com%2Fbootstrap5%2Findex.php
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=aee286&media=https%3A%2F%2Fmaterializecss.com
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=51b8b2&media=https%3A%2F%2Fopenclassrooms.com%2Ffr%2Fcourses%2F3936801-composez-des-interfaces-utilisateurs-en-material-design%2F4392371-utilisez-le-framework-materialize-css

Last update:
2024/11/02
16:58

public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

Formulaires Django

(repris du tutoriel django_forms)

La dernière chose que nous voulons faire sur notre site web, c'est créer une manière de mettre a jour
l'etat des personnages. Les formulaires (forms) vont nous permettre de rendre le site dynamique !

Comme toutes les choses importantes dans Django, les formulaires ont leur propre fichier :
forms.py.

Nous allons devoir créer un fichier avec ce nom dans notre dossier blog.

playground
 └── forms.py

Ouvrez maintenant ce fichier dans l'éditeur de code et tapez le code suivant :

from django import forms

from .models import Character

class MoveForm(forms.ModelForm):

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=4baf0a&media=https%3A%2F%2Ftutorial.djangogirls.org%2Ffr%2Fdjango_forms%2F

2026/02/04 11:20 5/10 Autonomie 1 : Une galerie en Django

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 class Meta:
 model = Character
 fields = ('lieu',)

Tout d'abord, nous avons besoin d'importer les formulaires Django (from django import forms),
puis notre modèle Character (from .models import Character).

Comme vous l'avez probablement deviné, MoveForm est le nom de notre formulaire. Nous avons
besoin d'indiquer à Django que ce formulaire est un ModelForm (pour que Django fasse certaines
choses automatiquement pour nous). Pour cela, nous utilisons forms.ModelForm.

Ensuite, nous avons la class Meta qui nous permet de dire à Django quel modèle il doit utiliser pour
créer ce formulaire (model = Character).

Enfin, nous précisions quel⋅s sont le⋅s champ⋅s qui doivent figurer dans notre formulaire. Dans notre
cas, nous souhaitons que seul le lieu apparaisse dans notre formulaire.

Et voilà, c'est tout ! Tout ce qu'il nous reste à faire, c'est d'utiliser ce formulaire dans une vue et de
l'afficher dans un template.

Nous allons donc une nouvelle fois suivre le processus suivant et créer : un lien vers la page, une URL,
une vue et un template.

Lien vers une page contenant le formulaire

Il est temps d'ouvrir playground/templates/playground/base.html dans l'éditeur de code et
ajouter un lien vers la vue character_detail.

<a href="{% url 'character_detail' id_character=character.id_character
%}">{{ character.id_character }}

URL

Ouvrez le fichier

playground/urls.py

dans l'éditeur de code et mettez ceci:

from django.urls import path
from . import views

urlpatterns = [
 path('', views.character_list, name='character_list'),
 path('character/<str:id_character>/', views.character_detail,
name='character_detail'),
 path('character/<str:id_character>/?<str:message>',
views.character_detail, name='character_detail_mes'),

http://december.com/html/4/element/a.html
http://december.com/html/4/element/a.html

Last update:
2024/11/02
16:58

public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

]

La vue character_detail

Ouvrez maintenant le fichier playground/views.py dans l'éditeur de code et ajoutez les lignes
suivantes avec celles du from qui existent déjà :

from django.shortcuts import render, get_object_or_404, redirect
from .forms import MoveForm
from .models import Character, Equipement

Create your views here.
def character_list(request):
 characters = Character.objects.filter()
 return render(request, 'playground/character_list.html', {'characters':
characters})

def character_detail(request, id_character):
 character = get_object_or_404(Character, id_character=id_character)
 lieu = character.lieu
 form=MoveForm()
 return render(request,
 'playground/character_detail.html',
 {'character': character, 'lieu': lieu, 'form': form})

Afin de pouvoir créer un nouveau formulaire Move, nous avons besoin d'appeler la fonction
MoveForm() et de la passer au template. Nous reviendrons modifier cette vue plus tard, mais pour
l'instant, créons rapidement un template pour ce formulaire.

Template

Nous avons à présent besoin de créer un fichier character_detail.html dans le dossier
playground/templates/playground et de l'ouvrir dans l'éditeur de code. Afin que notre
formulaire fonctionne, nous avons besoin de plusieurs choses :

Nous avons besoin d'afficher le formulaire. Pour cela, nous n'avons qu'à utiliser1.
form.as_uk

.
La ligne précédente va avoir besoin d'être entourée des balises HTML <form2.
method="POST">…</form>.
Nous avons besoin d'un bouton Valider. Nous allons le créer à l'aide d'un bouton HTML :3.
Valider.
Enfin, nous devons ajouter {% csrf_token %} juste après <form …>. C'est très important car4.
c'est ce qui va permettre de sécuriser votre formulaire ! Si vous oubliez ce détail, Django se
plaindra lorsque vous essaierez de sauvegarder le formulaire:

Ok, voyons maintenant à quoi devrait ressembler le HTML contenu dans le fichier

2026/02/04 11:20 7/10 Autonomie 1 : Une galerie en Django

WiKi informatique - https://wiki.centrale-med.fr/informatique/

character_detail.html :

{% extends 'playground/base.html' %}
{% load static %}
{% block content %}
<div class="page-header">
 <h1>
 {{ character.id_character }}
 </h1>
 <form method="POST" class="post-form">{% csrf_token %}
 Changer : {{ form.as_ul }}
 <button type="submit" class="btn btn-outline-light">OK</button>
 Back
 </form>
</div>

{% endblock %}

Rafraîchissons la page ! Et voilà : le formulaire s'affiche sous la forme d'une liste d'options!

Mais attendez une minute! Lorsque vous sélectionnez une option, que se passera-t-il? Rien!
Retournons à notre vue.

Sauvegarder le contenu du formulaire

Ouvrez à nouveau blog/views.py dans l'éditeur de code. Actuellement, post_new n'est composé
que des lignes de code suivantes :

def character_detail(request, id_character):
 character = get_object_or_404(Character, id_character=id_character)
 form=MoveForm()
 return render(request,
 'playground/character_detail.html',
 {'character': character, 'lieu': lieu, 'form': form})

Lorsque nous envoyons notre formulaire, nous revenons à la même vue. Cependant, nous récupérons
les données dans request, et plus particulièrement dans request.POST. Vous rappelez-vous
comment dans le fichier HTML, notre définition de la variable form avait la méthode method=POST?
Tous les champs du formulaire se trouvent maintenant dans request.POST. Veillez à ne pas
renommer POST en quoi que ce soit d'autre : la seule autre valeur autorisée pour method est GET.
Malheureusement, nous n'avons pas le temps de rentrer dans les détails aujourd'hui.

Donc dans notre vue nous avons deux situations différentes à gérer : la première quand on accède à
la page pour la première fois et nous voulons un formulaire vide, et la seconde quand on revient à la
vue avec les données que l'on a saisies dans le formulaire. Pour gérer ces deux cas, nous allons
utiliser une condition

 if request.method == "POST":
 [...]

http://december.com/html/4/element/div.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/div.html

Last update:
2024/11/02
16:58

public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

 else:
 form = MoveForm()

Il faut maintenant remplir à l'endroit des pointillés […]. Si method contient POST alors on veut
construire le MoveForm avec les données du formulaire, n'est-ce pas ? Nous allons le faire comme
cela : </html>

 form = MoveForm(request.POST, instance=character)

La prochaine étape est de vérifier que le formulaire a été rempli correctement (tous les champs
obligatoires ont été remplis et aucune valeur incorrecte n'a été envoyée). Nous allons faire ça
en utilisant form.is_valid().

Testons donc si notre formulaire est valide et, si c'est le cas, sauvegardons-le !

 if form.is_valid():
 ancien_lieu = get_object_or_404(Equipement,
id_equip=character.lieu.id_equip)
 ancien_lieu.disponibilite = "libre"
 ancien_lieu.save()
 form.save()
 nouveau_lieu = get_object_or_404(Equipement,
id_equip=character.lieu.id_equip)
 nouveau_lieu.disponibilite = "occupé"
 nouveau_lieu.save()

En gros, nous effectuons deux choses ici : nous sauvegardons le nouvel état du personnage grâce à
form.save et nous mettons à jour l'occupation des lieux. Rappelez vous, tout déplacement du
personnage s'acccompagne d'un changement d'occupation. Nous devons également modifier les
lieux. ancien_lieu.save() et nouveau_lieu.save() sauvegarderont les changements. Et voilà,
la mise à jour est enregistrée !

Enfin, ce serait génial si nous pouvions tout de suite aller à la page character_detail avec le
contenu que nous venons de créer. Pour cela, nous avons besoin d'importer une dernière chose :

Maintenant, nous allons ajouter la ligne qui signifie "aller à la page character_detail pour le
changement qui vient d'être enregistré.

 return redirect('character_detail', id_character=id_character)

character_detail est le nom de la vue où nous voulons aller.

Voyons à quoi ressemble maintenant notre vue ?

def character_detail(request, id_character):
 character = get_object_or_404(Character, id_character=id_character)
 form=MoveForm()
 if form.is_valid():
 ancien_lieu = get_object_or_404(Equipement,
id_equip=character.lieu.id_equip)

2026/02/04 11:20 9/10 Autonomie 1 : Une galerie en Django

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 ancien_lieu.disponibilite = "libre"
 ancien_lieu.save()
 form.save()
 nouveau_lieu = get_object_or_404(Equipement,
id_equip=character.lieu.id_equip)
 nouveau_lieu.disponibilite = "occupé"
 nouveau_lieu.save()
 return redirect('character_detail', id_character=id_character)
 else:
 form = MoveForm()
 return render(request,
 'playground/character_detail.html',
 {'character': character, 'lieu': lieu, 'form': form})

Voyons si ça marche. Allez à l'adresse http://127.0.0.1:8000/character/Tic/, selectionnez
un nouveau lieu, sauvegardez … et voilà ! La mise a jour est prise en compte !

Modèle complet

Il ne reste plus qu'à raffiner le modèle afin qu'il corresponde aux contraintes définies en début
d'énoncé.

Si le lieu de destination n'est pas libre, alors le changement ne doit pas être accepté. Il ne faut
donc pas sauvegarder l'état du personnage immédiatement. Cela est possible grâce à l'option :

 form.save(commit=False)

Avec cette option, le lieu est mis à jour dans l'objet character mais pas dans la base de
données! Il est alors possible de tester si le nouveau lieu est bien libre en regardant si
character.lieu.disponibilite est "libre".
Si c'est bon, alors effectuez les changements et n'oubliez pas de sauvegarder avec
character.save().
Si ce n'est pas le cas, alors les changements ne doivent pas être enregistrés.
N'oubliez pas non plus: le changement de lieu a pour conséquence un changement d'état, qui
passe par exemple d'"affamé" à "repus" lorsqu'on le déplace sur la mangeoire. Reprenez
toutes les conditions et tenez en compte pour la mise à jour du personnage.
Il est bien sûr possible de reprendre en l'adaptant la structure de contrôleur vue au TD1.

Les messages

Lorsqu'un changement n'est pas autorisé, il est préférable d'afficher un message d'avertissement. Le
message transmis comme paramètre au template character_detail.html. Le cadre sera activé
uniquement si le message est non vide. Pensez à modifier les paramètres d'appel du template dans
views.py.

 {% if message != ''%}
 <div class="alert alert-danger" role="alert">
 {{message}}
 </div>

http://127.0.0.1:8000/character/Tic/
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html

Last update:
2024/11/02
16:58

public:appro-s7:td_web_hamsters https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:20

 {% endif %}

Et normalement c'est tout ! Félicitations ! :)

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

Last update: 2024/11/02 16:58

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:appro-s7:td_web_hamsters?rev=1730563114

	[Autonomie 1 : Une galerie en Django]
	Autonomie 1 : Une galerie en Django
	Indications
	model.py

	Formulaires Django
	Lien vers une page contenant le formulaire
	URL
	La vue character_detail
	Template
	Sauvegarder le contenu du formulaire
	Modèle complet
	Les messages

