2026/02/04 07:37 1/12 Notes sur les tutoriaux d'Oracle

Notes sur les tutoriaux d'Oracle

Une petite collection de notes concernant le tutoriel Java d'Oracle. On suivra |'ordre des deux
premiers trails du tutorial :

e getting started
e learning the Java langage

Trail getting started

https://docs.oracle.com/javase/tutorial/getStarted/index.html

Une fois le tutoriel lu, vous pourrez I'exécuter en suivant la partie utiliser intellij.

Trail learning the Java Langage
https://docs.oracle.com/javase/tutorial/java/index.html

Concepts

https://docs.oracle.com/javase/tutorial/java/concepts/index.html

Pendant Java de la partie paradigme objet et modelisation uml du cours.
Language basics
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html
Variable

En java tout est typé. Une variable ne peut contenir que des objets d'un seul type. On les déclare ainsi

type nom

Le code ci-dessus a déclaré une variable qui s'appelle nom et qui peut contenir des objets de type
type. Exemple :

int x
String nom

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://docs.oracle.com/javase/tutorial/getStarted/index.html
https://docs.oracle.com/javase/tutorial/java/index.html
https://docs.oracle.com/javase/tutorial/getStarted/index.html
https://wiki.centrale-med.fr/informatique/public:java:utiliser_intellij
https://docs.oracle.com/javase/tutorial/java/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://wiki.centrale-med.fr/informatique/public:mco-2:paradigme_objet_et_modelisation_uml
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

Type primitif

Un énorme piege de Java est que bien qu'il soit un langage objet, le poids de I'histoire
fait que les nombres (int float et double) ne sont pas des objets. Ce sont des types
primitifs.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

e int : entier sur 32 bits

« float : réel flottant sur 32 bit

e double : réel sur 64 bits

e char : nombre correspondant a un caractere (16-bit unicode)
¢ boolean : true et false

En gros les nombres et les booléens. Ce ne sont pas des objets (leur type ne commence pas par des
majuscules).

¢ |Is ne possedent pas de méthodes.
e |'égalité se fait avec I'opérateur ==.

tableaux

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
Les tableaux en Java :

¢ sont fixes (on ne peut pas en augmenter la taille)

e contiennent uniqguement un type d'objet

e sont construits avec new typeObjet[nombreObjet]; ounew typeObjet[] {objetl, ..,
objetn};

Ne confondez pas :

e la variable: int[] tableauEntier;
e et I'objet : tableauEntier = new int[10]; (construction avec new)

tableauEntier est une variable pouvant contenir un tableau, pas le tableau !
la classe java.util.Arrays contient plein de méthodes utiles pour les tableaux :

e Arrays.toString() pour convertir un tableau en chaine de caractéeres.
e Arrays.sort() pour trier

com.mco

java.util.Arrays

Main

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://www.fileformat.info/info/charset/UTF-16/list.htm
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

2026/02/04 07:37 3/12 Notes sur les tutoriaux d'Oracle

void main(String| | args
int tableauEntier
tableauEntier int , 3, 2, 6, 4,

System.out.println(tableauEntier
String tableauConvertiEnString = Arrays.toString(tableauEntier
System.out.println(tableauConvertiEnString

Arrays.sort(tableauEntier

System.out.println(Arrays.toString(tableauEntier

La création de I'objet tableau ne crée par les objets. On suppose que j'ai une classe
Card qui représente une carte Son constructeur est new Card(int value,
String color). Le code suivant fait dans I'ordre :

1. crée une variable pouvant contenir un tableau de 2 cartes,
2. crée le tableau,
3. pour chaque case du table crée un objet Card que I'on met dedans.

La création des objet a mettre dans un tableau est indispensable.

Card deuxCartes

deuxCartes Card

deuxCartes Card(1, "SPADE"
deuxCartes Card(7, "HEART"

Si I'on omet la création des 2 cartes, les deux objets sont null qui est I'objet vide en
Java.

Operator

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
Récapitulatif

Je préfere que vous utilisiez += 1 et -= 1 ala place de ++ et — qui sont certes classe
@ et font hacker mais peuvent vous trahir. Par exemple qu'affiche le code suivant :

int i

WiKi informatique - https://wiki.centrale-med.fr/informatique/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arrays
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arrays
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arrays
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/opsummary.html

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

@ System.out.println(i

Expressions, Statements, and Blocks

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

En python les blocs sont déterminés par des indentations, en Java par des accolades. On indentera
également pour des questions de lisibilité.

Je sais bien que des blocs d'une seule ligne n'ont pas besoin d'accolades mais
mettez-en tout de méme !

Un code est fait pour évoluer et lorsque I'on rajoute une instruction on oublie souvent
de rajouter 'accolade. Par exemple le code suivant ne fait pas ce que I'on pense :

int i
i i i
System.out.println("J'affiche 1 : "
System.out.println(i

Control Flow Statements

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html
Boucles For : https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html
Pour les boucles for :

e préférez dans la mesure du possible la forme en pour chaque (for (int item: numbers)
{..}) qui ressemble au pour chaque de python. Elle est plus claire.

 avec les stream de java 8 (bien au-dela de ce cours introductif), il est possible d'avoir une forme
de range : intstream en java.

Lesson: Classes and Objects

https://docs.oracle.com/javase/tutorial/java/javaOO/index.html

Comprenez bien cette partie. Tout I'intérét de Java est la dedans !

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html
http://www.deadcoderising.com/2015-05-19-java-8-replace-traditional-for-loops-with-intstreams/
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html

2026/02/04 07:37 5/12 Notes sur les tutoriaux d'Oracle

Classes

https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
Pour Java tout est une classe, méme le point de départ de notre programme.
Le fichier Main. java contient une méthode statique main qui est le point de départ de notre

programme. Par défaut, lorsque I'on coche Command Line Application, Intellij va créer un fichier
Main.java Contenant une méthode statique main qui sera le point de départ de notre application :

com.exemple
Main

void main(String args
//le code

Declaring Classes

https://docs.oracle.com/javase/tutorial/java/javaOO/classdecl.html

Un programme Java est constitué de classes. Chaque classe est décrite dans un fichier ayant le nom
de la classe et chaque fichier ne contient qu'une seule classe. Fichier MaClasse. java typique :

com.domaine.application

les.méthodes.Utilisée.ici
mais.définies.ailleurs

MaClasse
// des attributs, constructeurs et méthodes.

Une classe particuliere (donc un fichier) contient une méthode statique nommée "main" qui
constituera le point de départ du programme.

Declaring Member Variables

https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html

La plupart du temps les attributs sont réservés au package ou privés (accessibles directement
uniqguement par la classe) et on y accede via des méthodes dites getter (getAttribut pourconnaitre
I'attribut) et setter (setAttribut pour changer I'attribut).

Fichier MaClasse. java suite :

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://docs.oracle.com/javase/tutorial/java/javaOO/classdecl.html
https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

// package et imports

MaClasse
typel attribut

typel getAttribut
void setAttribut(typel attribut

// constructeurs et méthodes.

Defining Methods

https://docs.oracle.com/javase/tutorial/java/javaO0/methods.html

Une méthode est définie par une signature : typeRetour nomMethode(typeParametrel parametrel,

o)

Pour Java 2 méthodes sont différentes si :

* leurs noms sont différents
* leurs noms sont identiques mais le nombre de parametres ou le type des parametres sont
différents.

On peut donc avoir plusieurs méthodes avec le méme nom du moment que leurs parametres sont

différents. C'est ce que I'on appelle la surcharge.

Pour Java, deux méthodes de méme nom ont méme type de retour. Cela évite les
ambiguités avec des méthodes n'étant différentes que par leur type de sortie et non
distinguables par le compilateur.

Providing Constructors for Your Classes

https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html

On a coutume de présenter (grace a la surcharge) plusieurs constructeurs. Celui ayant le plus de
parametres étant appelé par tous les autres (avec le mot clé this) :

// package et imports

MaClasse
typel attribut

typel getAttribut
void setAttribut(typel attribut

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html

2026/02/04 07:37 7/12 Notes sur les tutoriaux d'Oracle

MaClasse (typel attribut
.attribut attribut

MaClasse
objetDeTypel); // on suppose que l'on a un objet de typel

// méthodes.

Passing Information to a Method or a Constructor

https://docs.oracle.com/javase/tutorial/java/javaO0/arguments.html

Object

La partie https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html est cruciale pour
comprendre comment fonctionne un programme Java.

Creating Objects

On n'utilise que des objets : c'est eux la réalité. Les classes ne servent qu'a créer des objets.
https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html

On utilisera toujours le mot clé new pour créer des objets. Ne confondez pas variables et objets :

Point originOne; //déclare une variable pouvant nommer un objet
origineOne Point // on crée un Point que 1'on nomme par origineOne.

Point aPoint = origineOne; // aPoint est un autre nom pour l'objet également
nommé origineOne.

Using Objects

https://docs.oracle.com/javase/tutorial/java/javaOO/usingobject.html

Attention a I'égalité entre objets. L'opérateur == compare si ce sont les mémes objets
(is en python), pas si leur contenu est identique ainsi

String("coucou" "coucou"

est faux. Ce sont deux objets différents. Pour vérifier que leur contenu est identique on

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+point
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+point
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+point
https://docs.oracle.com/javase/tutorial/java/javaOO/usingobject.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

utilise la méthode toString:
String("coucou")).equals("coucou"

est ainsi vrai.

u En python c'est le contraire :

* is pour savoir si deux objets sont les mémes,
e == pour savoir si le contenu de deux objets est identique

Ne vous laissez pas abuser : "coucou" == "coucou" va répondre true, mais c'est
0 parce que le compilateur Java est malin. Il associe aux deux éléments le méme objet.
U Les String étant non mutables (on ne peut les modifier) cela ne porte pas a
conséquence et accélere le code.

More on Classes
Using the this Keyword

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html
S'adresse a l'objet qui utilise la méthode. Le code ci-aprées se sert de this trois fois :

e dans le premier constructeur. L'objet courant est ici celui qui est construit. On affecte a son
attribut x (this.x) I'entier x passé en parametre.

e dans le constructeur sans parametre. On appelle le constructeur avec un parametre.

» dans la méthode. Elle rend un tableau contenant I'objet.

Exemple
int x

Exemple(int x
X = X

Exemple

Exemple| | encapsule
Exemple|]| tableau Exemple
tableau
tableau

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

2026/02/04 07:37 9/12 Notes sur les tutoriaux d'Oracle

Controlling Access to Members of a Class

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Permet de controler I'usage de méthodes et attributs de classes par le monde extérieur, c'est-a-dire
les autres classes du programme.

En Java, on peut controler cette visibilité de 4 facons (qui ont leur pendant en UML) :

e public : tout le monde peut voir et utiliser la méthode/attribut.

e protected : la classe et ses descendants peuvent voir et utiliser la méthode/attribut.

e private : uniguement la classe peut voir et utiliser la méthode/attribut.

e aucun modificateur : les classes du package peuvent voir et utiliser la méthode/attribut.

Si I'on ne veut pas s'embéter, une bonne regle est :

« de laisser les attributs sans modificateur (ou a la rigueur en private, mais cela risque de poser
des problemes pour les tests)
* de placer les méthodes/constructeurs en public.

Understanding Class Members

https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html

Les méthodes et attributs de classes sont caractérisés par le mot clé static. On s'en sert
essentiellement de trois facons :

 pour la classe principale. Dans la méthode main bien s(ir mais aussi pour les différentes
parties du programme principal.

* pour les classes sans objet ou les constantes. La classe java.lang.Math est un bon
exemple avec ses méthodes qui sont toutes statiques et les définitions de constantes comme
PI etE.

e pour construire des objets. En utilisant le pattern Factory pour créer des objets.

Nested Classes

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Vous pouvez sauter cette partie en premiere lecture. Cela permet des techniques de programmation
tres utiles mais ce n'est pas pour des débutants.

Enum Type

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://wiki.centrale-med.fr/informatique/public:mco-2:paradigme_objet_et_modelisation_uml#attributs_methodes_et_visibilite
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
http://jlordiales.me/2012/12/26/static-factory-methods-vs-traditional-constructors/
https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

Idéal pour traiter avec des constantes comme les jours de la semaine, les couleurs d'un jeu de carte,
etc.

Annotations

https://docs.oracle.com/javase/tutorial/java/annotations/index.html

L'IDE les met souvent tout seul comme @0verride lorsque I'on récrit une méthode d'un ancétre.
Sachez que ca existe, mais nous ne |'utiliserons pas plus que ca.

Un tutorial sympa (et en francais) : https://fr.wikibooks.org/wiki/Programmation_Java/Annotations

Lesson: Interfaces and Inheritance

https://docs.oracle.com/javase/tutorial/java/landl/index.html
Grouper les objets par :

e ce qu'ils sont : héritage
e ce qu'ils font : interfaces

Interfaces

https://docs.oracle.com/javase/tutorial/java/landl/createinterface.html
Permet de définir des objets par ce qu'ils FONT.

Les variables peuvent étre définies comme pouvant contenir des objets implémentant une interface
particuliere. Les objets doivent tout de méme étre créés de facon normale (un new suivi d'un de ses
constructeur) mais ils peuvent étre rangés et véhiculés par des variables respectant des
fonctionnalités particulieres.

Héritage

https://docs.oracle.com/javase/tutorial/java/landl/subclasses.html

Le mot clé super permet d'accéder aux constructeurs et méthodes des ancétres.

Object as a Superclass

https://docs.oracle.com/javase/tutorial/java/landl/objectclass.html
Les trois méthodes ici qu'il faudra a priori toujours redéfinir sont :

e String toString() qui convertit un objet en chaine de caracteres
e boolean equals(0Object o) qui vérifie que le contenu de 2 objets coincide

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

https://docs.oracle.com/javase/tutorial/java/annotations/index.html
https://fr.wikibooks.org/wiki/Programmation_Java/Annotations
https://docs.oracle.com/javase/tutorial/java/IandI/index.html
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html
https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html
https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
https://docs.oracle.com/javase/tutorial/java/IandI/super.html
https://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html

2026/02/04 07:37 11/12 Notes sur les tutoriaux d'Oracle

e int hashcode() qui convertit un objet en nombre
Number and Strings
https://docs.oracle.com/javase/tutorial/java/data/index.html
Number

https://docs.oracle.com/javase/tutorial/java/data/numbers.html

Les classes et objets associés aux nombres.

LO] int n'est pas une classe alors qu'lnteger en est une.

String

https://docs.oracle.com/javase/tutorial/java/data/strings.html

Les chaines de caracteres se comportent comme en python.

Generics

https://docs.oracle.com/javase/tutorial/java/generics/index.html

Peut étre extrémement pénible et compliqué. Nous serons forcés de I'utiliser (et cela peut étre utile),
mais il faut toujours un peu penser et tester si cela fonctionne ou pas.

0 Les generics ne fonctionnent qu'avec des classes. Ainsi pour faire une ArrayList
U d'entiers il faut utiliser : ArrayList<Integer> et non pas ArrayList<int>

Un tutorial sur les types génériques en java qui montre un peu tous les cas d'utilisations.

Packages

https://docs.oracle.com/javase/tutorial/java/package/index.html

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://docs.oracle.com/javase/tutorial/java/data/index.html
https://docs.oracle.com/javase/tutorial/java/data/numbers.html
https://docs.oracle.com/javase/tutorial/java/data/strings.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html
http://howtodoinjava.com/core-java/generics/complete-java-generics-tutorial/
https://docs.oracle.com/javase/tutorial/java/package/index.html

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:java:misc

Last update: 2016/02/26 09:23

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:java:misc

	Notes sur les tutoriaux d'Oracle
	Trail getting started
	Trail learning the Java Langage
	Concepts
	Language basics
	Variable
	Type primitif
	tableaux
	Operator
	Expressions, Statements, and Blocks
	Control Flow Statements

	Lesson: Classes and Objects
	Classes
	Declaring Classes
	Declaring Member Variables

	Defining Methods
	Providing Constructors for Your Classes
	Passing Information to a Method or a Constructor
	Object
	Creating Objects
	Using Objects

	More on Classes
	Using the this Keyword
	Controlling Access to Members of a Class
	Understanding Class Members

	Nested Classes
	Enum Type

	Annotations
	Lesson: Interfaces and Inheritance
	Interfaces
	Héritage
	Object as a Superclass

	Number and Strings
	Number
	String

	Generics
	Packages

