
2026/02/04 07:37 1/12 Notes sur les tutoriaux d'Oracle

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Notes sur les tutoriaux d'Oracle

Une petite collection de notes concernant le tutoriel Java d'Oracle. On suivra l'ordre des deux
premiers trails du tutorial :

getting started
learning the Java langage

Trail getting started

https://docs.oracle.com/javase/tutorial/getStarted/index.html

Une fois le tutoriel lu, vous pourrez l'exécuter en suivant la partie utiliser intellij.

Trail learning the Java Langage

https://docs.oracle.com/javase/tutorial/java/index.html

Concepts

https://docs.oracle.com/javase/tutorial/java/concepts/index.html

Pendant Java de la partie paradigme objet et modelisation uml du cours.

Language basics

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

Variable

En java tout est typé. Une variable ne peut contenir que des objets d'un seul type. On les déclare ainsi
:

type nom;

Le code ci-dessus a déclaré une variable qui s'appelle nom et qui peut contenir des objets de type
type. Exemple :

int x;
String nom;

https://docs.oracle.com/javase/tutorial/getStarted/index.html
https://docs.oracle.com/javase/tutorial/java/index.html
https://docs.oracle.com/javase/tutorial/getStarted/index.html
https://wiki.centrale-med.fr/informatique/public:java:utiliser_intellij
https://docs.oracle.com/javase/tutorial/java/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://wiki.centrale-med.fr/informatique/public:mco-2:paradigme_objet_et_modelisation_uml
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

Type primitif

Un énorme piège de Java est que bien qu'il soit un langage objet, le poids de l'histoire
fait que les nombres (int float et double) ne sont pas des objets. Ce sont des types
primitifs.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

int : entier sur 32 bits
float : réel flottant sur 32 bit
double : réel sur 64 bits
char : nombre correspondant à un caractère (16-bit unicode)
boolean : true et false

En gros les nombres et les booléens. Ce ne sont pas des objets (leur type ne commence pas par des
majuscules).

Ils ne possèdent pas de méthodes.
L'égalité se fait avec l'opérateur ==.

tableaux

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Les tableaux en Java :

sont fixes (on ne peut pas en augmenter la taille)
contiennent uniquement un type d'objet
sont construits avec new typeObjet[nombreObjet]; ou new typeObjet[] {objet1, …,
objetn};

Ne confondez pas :

la variable : int[] tableauEntier;
et l'objet : tableauEntier = new int[10]; (construction avec new)

tableauEntier est une variable pouvant contenir un tableau, pas le tableau !

la classe java.util.Arrays contient plein de méthodes utiles pour les tableaux :

Arrays.toString() pour convertir un tableau en chaîne de caractères.
Arrays.sort() pour trier

package com.mco;

import java.util.Arrays;

public class Main {

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://www.fileformat.info/info/charset/UTF-16/list.htm
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

2026/02/04 07:37 3/12 Notes sur les tutoriaux d'Oracle

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 public static void main(String[] args) {

 int[] tableauEntier;

 tableauEntier = new int[] {1, 3, 2, 6, 4, 5};

 System.out.println(tableauEntier);
 String tableauConvertiEnString = Arrays.toString(tableauEntier);
 System.out.println(tableauConvertiEnString);

 Arrays.sort(tableauEntier);

 System.out.println(Arrays.toString(tableauEntier));
 }
}

La création de l'objet tableau ne crée par les objets. On suppose que j'ai une classe
Card qui représente une carte Son constructeur est new Card(int value,
String color). Le code suivant fait dans l'ordre :

crée une variable pouvant contenir un tableau de 2 cartes,1.
crée le tableau,2.
pour chaque case du table crée un objet Card que l'on met dedans.3.

La création des objet à mettre dans un tableau est indispensable.

Card [] deuxCartes;
deuxCartes = new Card[2];

deuxCartes[0] = new Card(1, "SPADE");
deuxCartes[1] = new Card(7, "HEART");

Si l'on omet la création des 2 cartes, les deux objets sont null qui est l'objet vide en
Java.

Operator

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Récapitulatif

Je préfère que vous utilisiez += 1 et -= 1 à la place de ++ et – qui sont certes classe
et font hacker mais peuvent vous trahir. Par exemple qu'affiche le code suivant :

int i = 1;

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arrays
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arrays
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arrays
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/opsummary.html

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

System.out.println(i++);

Expressions, Statements, and Blocks

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

En python les blocs sont déterminés par des indentations, en Java par des accolades. On indentera
également pour des questions de lisibilité.

Je sais bien que des blocs d'une seule ligne n'ont pas besoin d'accolades mais
mettez-en tout de même !

Un code est fait pour évoluer et lorsque l'on rajoute une instruction on oublie souvent
de rajouter l'accolade. Par exemple le code suivant ne fait pas ce que l'on pense :

int i;
for (i=0 ; i < 10 ; i += 1)
 System.out.println("J'affiche i : ");
 System.out.println(i);

Control Flow Statements

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html

Boucles For : https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html

Pour les boucles for :

préférez dans la mesure du possible la forme en pour chaque (for (int item: numbers)
{…}) qui ressemble au pour chaque de python. Elle est plus claire.
avec les stream de java 8 (bien au-delà de ce cours introductif), il est possible d'avoir une forme
de range : intstream en java.

Lesson: Classes and Objects

https://docs.oracle.com/javase/tutorial/java/javaOO/index.html

Comprenez bien cette partie. Tout l'intérêt de Java est la dedans !

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html
http://www.deadcoderising.com/2015-05-19-java-8-replace-traditional-for-loops-with-intstreams/
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html

2026/02/04 07:37 5/12 Notes sur les tutoriaux d'Oracle

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Classes

https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html

Pour Java tout est une classe, même le point de départ de notre programme.

Le fichier Main.java contient une méthode statique main qui est le point de départ de notre
programme. Par défaut, lorsque l'on coche Command Line Application, Intellij va créer un fichier
Main.java Contenant une méthode statique main qui sera le point de départ de notre application :

package com.exemple;

public class Main {

 public static void main(String[] args) {
 //le code
 }
}

Declaring Classes

https://docs.oracle.com/javase/tutorial/java/javaOO/classdecl.html

Un programme Java est constitué de classes. Chaque classe est décrite dans un fichier ayant le nom
de la classe et chaque fichier ne contient qu'une seule classe. Fichier MaClasse.java typique :

package com.domaine.application;

import les.méthodes.Utilisée.ici;
import mais.définies.ailleurs;

class MaClasse {

 // des attributs, constructeurs et méthodes.
}

Une classe particulière (donc un fichier) contient une méthode statique nommée "main" qui
constituera le point de départ du programme.

Declaring Member Variables

https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html

La plupart du temps les attributs sont réservés au package ou privés (accessibles directement
uniquement par la classe) et on y accède via des méthodes dites getter (getAttribut pourconnaitre
l'attribut) et setter (setAttribut pour changer l'attribut).

Fichier MaClasse.java suite :

https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://docs.oracle.com/javase/tutorial/java/javaOO/classdecl.html
https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

// package et imports

class MaClasse {
 private type1 attribut;

 public type1 getAttribut();
 public void setAttribut(type1 attribut);

 // constructeurs et méthodes.

}

Defining Methods

https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

Une méthode est définie par une signature : typeRetour nomMethode(typeParametre1 parametre1,
…)

Pour Java 2 méthodes sont différentes si :

leurs noms sont différents
leurs noms sont identiques mais le nombre de paramètres ou le type des paramètres sont
différents.

On peut donc avoir plusieurs méthodes avec le même nom du moment que leurs paramètres sont
différents. C'est ce que l'on appelle la surcharge.

Pour Java, deux méthodes de même nom ont même type de retour. Cela évite les
ambiguïtés avec des méthodes n'étant différentes que par leur type de sortie et non
distinguables par le compilateur.

Providing Constructors for Your Classes

https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html

On a coutume de présenter (grâce à la surcharge) plusieurs constructeurs. Celui ayant le plus de
paramètres étant appelé par tous les autres (avec le mot clé this) :

// package et imports

class MaClasse {
 private type1 attribut;

 public type1 getAttribut();
 public void setAttribut(type1 attribut);

https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html

2026/02/04 07:37 7/12 Notes sur les tutoriaux d'Oracle

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 public MaClasse (type1 attribut) {
 this.attribut = attribut;
 }

 public MaClasse() {
 this(objetDeType1); // on suppose que l'on a un objet de type1
 }

 // méthodes.

}

Passing Information to a Method or a Constructor

https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

Object

La partie https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html est cruciale pour
comprendre comment fonctionne un programme Java.

Creating Objects

On n'utilise que des objets : c'est eux la réalité. Les classes ne servent qu'à créer des objets.

https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html

On utilisera toujours le mot clé new pour créer des objets. Ne confondez pas variables et objets :

Point originOne; //déclare une variable pouvant nommer un objet
origineOne = new Point(); // on crée un Point que l'on nomme par origineOne.

Point aPoint = origineOne; // aPoint est un autre nom pour l'objet également
nommé origineOne.

Using Objects

https://docs.oracle.com/javase/tutorial/java/javaOO/usingobject.html

Attention à l'égalité entre objets. L'opérateur == compare si ce sont les mêmes objets
(is en python), pas si leur contenu est identique ainsi

new String("coucou") == "coucou"

est faux. Ce sont deux objets différents. Pour vérifier que leur contenu est identique on

https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+point
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+point
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+point
https://docs.oracle.com/javase/tutorial/java/javaOO/usingobject.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

utilise la méthode toString :

(new String("coucou")).equals("coucou");

est ainsi vrai.

En python c'est le contraire :

is pour savoir si deux objets sont les mêmes,
== pour savoir si le contenu de deux objets est identique

Ne vous laissez pas abuser : "coucou" == "coucou" va répondre true, mais c'est
parce que le compilateur Java est malin. Il associe aux deux éléments le même objet.
Les String étant non mutables (on ne peut les modifier) cela ne porte pas à
conséquence et accélère le code.

More on Classes

Using the this Keyword

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

S'adresse à l'objet qui utilise la méthode. Le code ci-après se sert de this trois fois :

dans le premier constructeur. L'objet courant est ici celui qui est construit. On affecte à son
attribut x (this.x) l'entier x passé en paramètre.
dans le constructeur sans paramètre. On appelle le constructeur avec un paramètre.
dans la méthode. Elle rend un tableau contenant l'objet.

class Exemple {
 int x;

 Exemple(int x) {
 this.x = x;
 }

 Exemple() {
 this(42);
 }

 Exemple[] encapsule() {
 Exemple[] tableau = new Exemple[1];
 tableau[0] = this;
 return tableau;
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

2026/02/04 07:37 9/12 Notes sur les tutoriaux d'Oracle

WiKi informatique - https://wiki.centrale-med.fr/informatique/

}

Controlling Access to Members of a Class

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Permet de contrôler l'usage de méthodes et attributs de classes par le monde extérieur, c'est-à-dire
les autres classes du programme.

En Java, on peut contrôler cette visibilité de 4 façons (qui ont leur pendant en UML) :

public : tout le monde peut voir et utiliser la méthode/attribut.
protected : la classe et ses descendants peuvent voir et utiliser la méthode/attribut.
private : uniquement la classe peut voir et utiliser la méthode/attribut.
aucun modificateur : les classes du package peuvent voir et utiliser la méthode/attribut.

Si l'on ne veut pas s'embêter, une bonne règle est :

de laisser les attributs sans modificateur (ou à la rigueur en private, mais cela risque de poser
des problèmes pour les tests)
de placer les méthodes/constructeurs en public.

Understanding Class Members

https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html

Les méthodes et attributs de classes sont caractérisés par le mot clé static. On s'en sert
essentiellement de trois façons :

pour la classe principale. Dans la méthode main bien sûr mais aussi pour les différentes
parties du programme principal.
pour les classes sans objet ou les constantes. La classe java.lang.Math est un bon
exemple avec ses méthodes qui sont toutes statiques et les définitions de constantes comme
PI et E.
pour construire des objets. En utilisant le pattern Factory pour créer des objets.

Nested Classes

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Vous pouvez sauter cette partie en première lecture. Cela permet des techniques de programmation
très utiles mais ce n'est pas pour des débutants.

Enum Type

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://wiki.centrale-med.fr/informatique/public:mco-2:paradigme_objet_et_modelisation_uml#attributs_methodes_et_visibilite
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
http://jlordiales.me/2012/12/26/static-factory-methods-vs-traditional-constructors/
https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

Idéal pour traiter avec des constantes comme les jours de la semaine, les couleurs d'un jeu de carte,
etc.

Annotations

https://docs.oracle.com/javase/tutorial/java/annotations/index.html

L'IDE les met souvent tout seul comme @Override lorsque l'on récrit une méthode d'un ancêtre.
Sachez que ça existe, mais nous ne l'utiliserons pas plus que ça.

Un tutorial sympa (et en français) : https://fr.wikibooks.org/wiki/Programmation_Java/Annotations

Lesson: Interfaces and Inheritance

https://docs.oracle.com/javase/tutorial/java/IandI/index.html

Grouper les objets par :

ce qu'ils sont : héritage
ce qu'ils font : interfaces

Interfaces

https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

Permet de définir des objets par ce qu'ils FONT.

Les variables peuvent être définies comme pouvant contenir des objets implémentant une interface
particulière. Les objets doivent tout de même être créés de façon normale (un new suivi d'un de ses
constructeur) mais ils peuvent être rangés et véhiculés par des variables respectant des
fonctionnalités particulières.

Héritage

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

Le mot clé super permet d'accéder aux constructeurs et méthodes des ancêtres.

Object as a Superclass

https://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html

Les trois méthodes ici qu'il faudra a priori toujours redéfinir sont :

String toString() qui convertit un objet en chaîne de caractères
boolean equals(Object o) qui vérifie que le contenu de 2 objets coïncide

https://docs.oracle.com/javase/tutorial/java/annotations/index.html
https://fr.wikibooks.org/wiki/Programmation_Java/Annotations
https://docs.oracle.com/javase/tutorial/java/IandI/index.html
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html
https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html
https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
https://docs.oracle.com/javase/tutorial/java/IandI/super.html
https://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html

2026/02/04 07:37 11/12 Notes sur les tutoriaux d'Oracle

WiKi informatique - https://wiki.centrale-med.fr/informatique/

int hashcode() qui convertit un objet en nombre

Number and Strings

https://docs.oracle.com/javase/tutorial/java/data/index.html

Number

https://docs.oracle.com/javase/tutorial/java/data/numbers.html

Les classes et objets associés aux nombres.

int n'est pas une classe alors qu'Integer en est une.

String

https://docs.oracle.com/javase/tutorial/java/data/strings.html

Les chaînes de caractères se comportent comme en python.

Generics

https://docs.oracle.com/javase/tutorial/java/generics/index.html

Peut être extrêmement pénible et compliqué. Nous serons forcés de l'utiliser (et cela peut être utile),
mais il faut toujours un peu penser et tester si cela fonctionne ou pas.

Les generics ne fonctionnent qu'avec des classes. Ainsi pour faire une ArrayList
d'entiers il faut utiliser : ArrayList<Integer> et non pas ArrayList<int>

Un tutorial sur les types génériques en java qui montre un peu tous les cas d'utilisations.

Packages

https://docs.oracle.com/javase/tutorial/java/package/index.html

https://docs.oracle.com/javase/tutorial/java/data/index.html
https://docs.oracle.com/javase/tutorial/java/data/numbers.html
https://docs.oracle.com/javase/tutorial/java/data/strings.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html
http://howtodoinjava.com/core-java/generics/complete-java-generics-tutorial/
https://docs.oracle.com/javase/tutorial/java/package/index.html

Last update: 2016/02/26 09:23 public:java:misc https://wiki.centrale-med.fr/informatique/public:java:misc

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:java:misc

Last update: 2016/02/26 09:23

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:java:misc

	Notes sur les tutoriaux d'Oracle
	Trail getting started
	Trail learning the Java Langage
	Concepts
	Language basics
	Variable
	Type primitif
	tableaux
	Operator
	Expressions, Statements, and Blocks
	Control Flow Statements

	Lesson: Classes and Objects
	Classes
	Declaring Classes
	Declaring Member Variables

	Defining Methods
	Providing Constructors for Your Classes
	Passing Information to a Method or a Constructor
	Object
	Creating Objects
	Using Objects

	More on Classes
	Using the this Keyword
	Controlling Access to Members of a Class
	Understanding Class Members

	Nested Classes
	Enum Type

	Annotations
	Lesson: Interfaces and Inheritance
	Interfaces
	Héritage
	Object as a Superclass

	Number and Strings
	Number
	String

	Generics
	Packages

