2026/02/04 11:01 1/7 Java, bytecode et JVM (et réciproquement)

Java, bytecode et JVM (et réciproquement)

Nous n'aurons en pratique quasi jamais besoin de ce qui va suivre, I'IDE le faisant pour nous.
Cependant, savoir comment tout cela fonctionne permet épisodiqguement de se sortir de mauvais pas.

Prérequis

e Vous avez suivi la partie utiliser Intellij et avez un programme "hello world!" fonctionnel.

 vous connaissez la différence entre JDK, JRE et JVM.

 pour les exemples on supposera que I'on a acces a un terminal (il en existe sous linux, mac et
Windows)

Principe

Cette vidéo montre comment fonctionne un ordinateur et comment il peut exécuter du code. De la les
différences entre les approches de Java et d'autres langages comme le C.

En gros, il existe 3 grand paradigmes pour I'exécution de programme :

* interprétation : un fichier écrit par un humain est "lu" par un programme qui traduit une a une
chaque ligne en langage machine (python fonctionne "en gros" comme ¢a)

e compilation : un fichier écrit par un humain est tout d'abord traduit complétement en langage
machine par un compilateur et c'est la traduction machine que I'on exécute (les langage C/C++
par exemple)

e machine virtuelle : un fichier écrit par un humain est tout d'abord traduit en un langage
intermédiaire (le bytecode en Java) et c'est ce fichier traduit qui est exécuté par une machine
virtuelle qui le transforme par bloc (ce qu'on appelle le JIT, Just In Time compilation) en langage
machine (le langage Java par exemple)

L'approche par machine virtuelle est une approche intermédiaire entre Il'interprétation pure et dure et
la compilation. Ceci permet de mitiger les principaux défauts des approches par compilation et
interprétation :

e compilation : il faut compiler chaque programme pour toutes les architectures et systemes
d'exploitations sur le quel on veut faire tourner son programme (mac, linux, windows,
téléphone, etc...). Ce qui n'est pas le cas avec 'approche interprétée/machine virtuelle puisque
seul I'interpréteur ou la machine virtuelle doit étre compilée sur chaque architecture machine.

« interprétation : comme chaque ligne est lue puis compilée puis exécutée, c'est
comparativement lent par rapport a un programme compilé. Le byte code de java est un
langage intermédiaire plus simple a convertir en langage machine.

Interprété

Programme python hello.py :

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/public:java:utiliser_intellij
http://www.oracle.com/technetwork/java/javase/tech/index.html
https://www.youtube.com/watch?v=2Xa3Y4xz8_s
https://www.youtube.com/watch?v=G1ubVOl9IBw

Last

;8?2}8:2/05 public:mco-2:java_bytecode_et_jvm_et_reciproquement https://wiki.centrale-med.fr/informatique/public:mco-2:java_bytecode_et_jvm_et_reciproquement

11:33

"Hello World!"
On I'exécute via l'interpréteur qui transforme chaque ligne une a une en langage machine :
~ $ python3 hello.py

Hello World!
~ $

Compilé

Programme C "hello.c" :
#include <stdio.h>
int main

printf("hello world!\n"

On le compile en exécutable (ici mac) avec un compilateur, ici gcc:

~ $ gcc hello.c
~$

Le compilateur a créé un fichier qui s'appelle par défaut a.out et qui est un fichier exécutable (la
commande file permet de connaitre le type d'une fichier) :

~ $ file a.out
a.out: Mach-0 64-bit executable x86 64
~ 3

Ce fichier peut donc étre exécuté sur notre machine :

~ $ ./a.out
hello world!
~ $

Bytecode Java

Fichier Hello. java

Hello
void main(String args
System.out.println("Hello World!"

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:01


http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://gcc.gnu.org
http://man7.org/linux/man-pages/man1/file.1.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

2026/02/04 11:01 3/7 Java, bytecode et JVM (et réciproquement)

On le transforme en bytecode grace a la commande javac. Le fichier de sortie se nomme
Hello.class:

~ $ javac Hello.java
~$

C'est un fichier java compilé (du bytecode, pas du langage machine) :

~ ¢ file Hello.class
Hello.class: compiled Java class data, version 52.0

~ $

On peut exécuter la classe Hello via la JVM (par défaut, la commande java va chercher un fichier
Hello.class pour exécuter la classe Hello) :

~ $ java Hello
Hello World!
~$

Distribuer son code Java

Lorsque I'on a beaucoup de fichiers, resources, etc, et ¢a va arriver trés vite, on a coutume de :

* placer son code dans des répertoires différents via des packages
e distribuer son code via une archive jar

Pour la démonstration on aura un unique fichier Hello. java dans le package com.mco (il est donc
dans le répertoire . /com/mco/ si le répertoire courant (. /) est la racine du projet) :

com.mco
Hello

void main(String| | args
System.out.println("Hello World!"

On compile le java :

~ $ javac com/mco/java.java

~$

On execute le bytecode depus le répertoire racine du projet :
~ $ java com/mco/Hello

Hello World!

~$

En supposant que I'on ait beaucoup de fichiers classes on les regroupe en un unique fichier jar.

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/public:mco-2:un_projet_complet#packages
https://docs.oracle.com/javase/tutorial/deployment/jar/index.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last
update:
2016/02/05
11:33

public:mco-2:java_bytecode_et_jvm_et_reciproquement https://wiki.centrale-med.fr/informatique/public:mco-2:java_bytecode_et_jvm_et_reciproquement

Souvent I'IDE le fera pour vous mais comme on est la pour apprendre on le fait a la main en suivant

['aide de la documentation :

jar cfe hello.jar com.mco.Hello com/mco/Hello.class

Un jar n'est rien d'autre qu'un gros fichier zip avec nos classes, nos ressources si nécessaires (image,
video, etc) et un répertoire META-INF contenant ses parametres (le fichier MANIFEST . MF par

exemple qui contient la classe a exécuter par défaut) :

~ $ jar tf hello.jar
META-INF/
META-INF/MANIFEST.MF
com/mco/Hello.class

~$
On peut ensuite I'exécuter :
~ $ java -jar hello.jar

Hello World!
~ $

Ou, si I'on veut exécuter une classe particuliere du jar :

~ $ java -cp hello.jar com.mco.Hello
Hello World!

~ %
Voir du bytecode en vrai

On se basera sur I'excellent article

http://www.cubrid.org/blog/dev-platform/understanding-jvm-internals/

Pour I'exercice, on utilisera notre Hello.java sans package que I'on aura compilé en Hello.class.

Le bytecode se voit en utilisant la commande javap:

~ $ javap -c Hello.class
Compiled from "Hello.java"
public class Hello {
public Hello();
Code:

0: aload O

1: invokespecial #1
java/lang/Object."<init>":()V

4: return

// Method

public static void main(java.lang.String[]);

https://wiki.centrale-med.fr/informatique/

Printed on 2026/02/04 11:01


https://docs.oracle.com/javase/tutorial/deployment/jar/appman.html
http://www.cubrid.org/blog/dev-platform/understanding-jvm-internals/

2026/02/04 11:01 5/7 Java, bytecode et JVM (et réciproquement)

Code:

0: getstatic #2 // Field
java/lang/System.out:Ljava/io/PrintStream;

3: ldc #3 // String Hello World!

5: invokevirtual #4 // Method
java/io/PrintStream.println: (Ljava/lang/String;)V

8: return
}
~ $

Nous avons 7 instructions et le fichier pese 416 octet. C'est beaucoup plus que le fichier initial qui
pese lui environ 110 octets. Regardons ces 416 octets.

Pour voir un fichier exécutable, on ne peut pas I'ouvrir avec un éditeur de texte qui va
essayer de le lire comme du texte (souvent en unicode). Nous voulons voir les 0 et les
1 qui le forment.

nombres. On utilise les nombres Hexadécimaux car pratiques pour séparer les octets
(8 bits, de 0 a 255 en base 10 et de 0 a FF en base 16) qui sont I'unité de base pour un
processeur

D Pour cela on utilisera un éditeur permettant de voir un fichier sous forme de suite de
.

Il en existe plein (j'utilise hexdump sous linux et Hex Fiend sous mac).

Le fichier Hello.class est le suivant :

~ $ hexdump Hello.class -C
00000000 ca fe ba be 00 00 00 33 00 1d Ga 00 06 00 Of 09

00000010 00 10 00 11 08 00 12 Ga 00 13 00 14 07 00 15 07

00000020 00 16 01 00 06 3c 69 6e 69 74 3e 01 00 03 28 29
... <init>... ()]
00000030 56 01 00 04 43 6f 64 65 01 00 Of 4c 69 6e 65 4e
|V...Code...LineN|
00000040 75 6d 62 65 72 54 61 62 6C 65 01 00 04 6d 61 69
|umberTable. . .mai|
00000050 6e 01 00 16 28 5b 4c 6a 61 76 61 2f 6C 61 6e 67
In...([Ljava/lang]|
00000060 2f 53 74 72 69 6e 67 3b 29 56 01 00 O0a 53 6f 75
| /String;)V...Sou|
00000070 72 63 65 46 69 6C 65 01 0O Oa 48 65 6C 6C 6T 26
| rceFile...Hello. |
00000080 6a 61 76 61 Oc 60 07 00 068 07 00 17 O6c 00 18 00

00000090 19 01 00 Oc 48 65 6C 6C 6f 20 57 6T 72 6C 64 21 |....Hello
World! |
00000020 07 00 la Oc 00 1b 00 1c 01 00 05 48 65 6C 6C 6F

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://fr.wikipedia.org/wiki/Codage_des_caractères
https://fr.wikipedia.org/wiki/Unicode
https://fr.wikipedia.org/wiki/Système_hexadécimal
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://www.freebsd.org/cgi/man.cgi?query=hexdump&sektion=1
http://ridiculousfish.com/hexfiend/

Last

;8?2;8:2/05 public:mco-2:java_bytecode_et_jvm_et_reciproquement https://wiki.centrale-med.fr/informatique/public:mco-2:java_bytecode_et_jvm_et_reciproquement

11:33

000000b0 01 00 10 6a 61 76 61 2f 6C 61 6e 67 2f 4f 62 6a
| ...java/lang/0bj |
000000cO 65 63 74 01 00 10 6a 61 76 61 2f 6¢C 61 6e 67 2f
|ect...java/lang/|
000000d0 53 79 73 74 65 6d 01 00 03 6f 75 74 01 00 15 4c
|System...out...L|
000000e® 6a 61 76 61 2f 69 6f 2f 50 72 69 6e 74 53 74 72
| java/io/PrintStr|
000000f0 65 61 6d 3b 01 00 13 6a 61 76 61 2f 69 6f 2f 50
|eam; ...java/io/P|
00000100 72 69 6e 74 53 74 72 65 61 6d 01 00 07 70 72 69
| rintStream...pri|
00000110 6e 74 6¢c 6e 01 00 15 28 4c 6a 61 76 61 2f 6¢C 61
|ntln...(Ljava/la|
00000120 6e 67 2f 53 74 72 69 6e 67 3b 29 56 00 21 00 05
|ng/String;)V.!. .|
00000130 00 06 00 00 00 GO 00 02 060 01 00 07 60 08 00 01

00000140 00 09 00 00 00 1d 00 01 0O 01 00 00 OO 05 2a b7
00000150 00 01 bl 00 00 00 01 GO Oa 00 0O 00 06 00 01 00
00000160 00 00 01 00 09 00 Ob 00 Oc 00 01 00 09 0O 00 00
00000170 25 00 02 00 01 00 00 GO 09 b2 00 02 12 03 b6 00
00000180 04 bl 00 00 00 01 00 Oa 0O GO 00 Oa 00 02 00 00
00000190 00 03 00 08 00 04 00 01 0O Od 00 00 0O 02 00 Oe

000001a0
~ $ 1s -la

La différence de taille s'explique par le format d'un fichier class. Remarquez la petite blague du magic
number des fichiers classes.

Recompiler en Java

Pour recompiler en java un fichier class il faut passer du bytecode au java. Cela ne peut pas se faire
sans perte. Pour cela il nous faudra un désassembleur. Nous utiliserons cfr qui a le bon go(t d'étre
écrit en java :

~ $ java -jar cfr 0 110.jar Hello.class
/*

* Decompiled with CFR 0 110.

*/

import java.io.PrintStream;

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:01


https://fr.wikipedia.org/wiki/Class_(format_de_fichier)
https://fr.wikipedia.org/wiki/Nombre_magique_(programmation)
https://fr.wikipedia.org/wiki/Nombre_magique_(programmation)
http://www.benf.org/other/cfr/

2026/02/04 11:01 717 Java, bytecode et JVM (et réciproquement)

public class Hello {
public static void main(String[] arrstring) {
System.out.println("Hello World!");

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:mco-2:java_bytecode_et_jvm_et_reciproquement F¥j

Last update: 2016/02/05 11:33

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:mco-2:java_bytecode_et_jvm_et_reciproquement

	Java, bytecode et JVM (et réciproquement)
	Prérequis
	Principe
	Interprété
	Compilé
	Bytecode Java

	Distribuer son code Java
	Voir du bytecode en vrai
	Recompiler en Java


