
2026/02/04 11:09 1/11 Classe Card

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Classe Card

On modélise ici une carte à jouer. On ira par touches successives en introduisant les concepts Java et
Objet. Vous devriez pouvoir suivre le cours sans connaissances particulières en Java. Pour chaque
notion, on renverra aux parties du tutoriel Oracle concerné.

Configuration du projet

On suppose que vous avez crée un nouveau projet en suivant le tutorial, donc que les paramètres de
votre projet sont :

nouveau projet avec Java 1.8
on choisit comme template : Command Line Application
Package de base com.mco

Créez des classes avec Intellij et la fenêtre projet

Pour voir la fenêtre projet cliquez sur : "view » Tool Windows » project" ceci cachera le projet s'il
était visible et le montrera s'il était caché. Puis pourvoir vos fichiers :

cliquez sur le petit triangle à côté nom du projet,
cliquez sur "src" (acronyme pour sources) qui contient vos fichiers.
vos fichiers sont rangés par package. Vous devriez donc voir une classe Main dans le package
com.mco

Lorsque l'on crée une nouvelle classe, il faut la placer dans le bon package. Cliquez donc toujours
sur le bon package avant de créer une nouvelle classe avec le clique droit ou le menu file.

Plan

On procèdera par touches successives :

v1 : Propriétés minimales d'une carte
v1.0 : uniquement les attributs et sans se soucier de packages et de visibilité.
v1.1 : on règle les problèmes de visibilité (changement de package et accesseurs publics)

v2 : on peut afficher à l'écran une carte !
v3 : on remplace l'attribut couleur par un enum
v4 : la difficile question de l'égalité.
v5 : un constructeur par défaut.

Card v1

On commence par créer une classe avec uniquement des attributs et un constructeur, la v1.0 puis on

https://wiki.centrale-med.fr/informatique/public:java:utiliser_intellij

Last update:
2016/02/10 09:31 public:mco-2:un_projet_complet:card https://wiki.centrale-med.fr/informatique/public:mco-2:un_projet_complet:card

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:09

ajoute les contrainte d'encapsulation des attributs.

Card v1.0

Notions vues :

attributs leurs valeurs va différentier un objet de cette classe d'un autre.
constructeur ce qui va créer un objet de la classe.
visibilité par défaut le package. Si tout se passe comme prévu on changera

Pour créer une classe (et le fichier qui va avec) :

placez vous dans le bon package en cliquant dessus dans la fenêtre projet,1.
"File » New » Java class"2.

Une fois dans le bon package on peut aussi :

"clic droit » New » Java class"
"CTRL + N"

Card.java

package com.mco;

public class Card {
 int value;
 String color;

 Card(int value, String color) {
 this.value = value;
 this.color = color;
 }
}

Faites du code LISIBLE :

noms de variable explicatifs,
code bien indenté ("Code » Reformat code" ou Ctrl+Alt+L par défaut peut
vous aider)

https://wiki.centrale-med.fr/informatique/public:java:misc#declaring_member_variables
https://wiki.centrale-med.fr/informatique/public:java:misc#providing_constructors_for_your_classes
https://wiki.centrale-med.fr/informatique/public:java:misc#controlling_access_to_members_of_a_class
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/04 11:09 3/11 Classe Card

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Main.java

On teste notre code :

un code non testé est un code cassé,
on va garder nos tests pour pouvoir les exécuter à chaque modification de code.

Pour la V1, les attributs de visibilité nous permettent d'utiliser les champs directement :

Notions vues :

mot clé static
Exécution de programme

package com.mco;

public class Main {

 private static void testCreationCard() {
 Card septDeCoeur = new Card(7, "coeur");

 System.out.println(septDeCoeur.value);
 System.out.println(septDeCoeur.color);
 }

 public static void main(String[] args) {
 testCreationCard();
 }
}

Le résultat devrait être :

7
coeur

Avec Intellij, ce que l'on exécute avec le menu "run » run" ou le triangle vert en haut
à droite de la fenêtre est déterminé par le nom à coté du triangle vert. Pour nous il
devrait y avoir marqué Main. Pour changer ce qui est exécuté (par exemple si l'on a
changé la classe Main de package) :

cliquez sur le triangle pointant vers le bas à côté du texte Main
cliquez sur "Edit Configurations…"
vous devriez ouvrir une nouvelle fenêtre avec

à gauche une liste de noms et Main en surbrillance
à droite une liste d'options. Celle qui nous interesse est "Main class:" dans
l'onglet configuration (qui est sélectionné par défaut).

La ligne "Main class:" de l'onglet configuration doit contenir com.mco.Main, c'est la

https://wiki.centrale-med.fr/informatique/public:java:misc#understanding_class_members
https://wiki.centrale-med.fr/informatique/public:java:misc#classes
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update:
2016/02/10 09:31 public:mco-2:un_projet_complet:card https://wiki.centrale-med.fr/informatique/public:mco-2:un_projet_complet:card

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:09

classe qui est exécutée. Si vous avez changé la classe Main de package ou que ce
n'est plus ça que vous voulez exécuter, placez le bon nom de la classe ici.

v1.1 : visibilité

On utilise quelques règles :

le code est placé dans des packages particuliers,
les attributs sont sans modificateur (setter) mais accessibles via des accesseurs (getters),
les méthodes constructeurs sont en public

Notions vues :

visibilité
base des packages
accéder aux attributs de l'extérieur via des getters/setters
design pattern : value object

Changement de package

Changer le package de Card.java doit se faire en changeant de dossier (packages et dossiers sont
identiques). Pour que cela se fasse sans douleur, on utilise les possibilités de l'IDE :

on change le nom du package de Card.java : le code devient rouge, package et répertoire ne1.
coïncident plus
on se place sur le rouge et on clique sur l'ampoule qui propose des moyens de corriger de2.
problème
on choisit move to package com.mco.battle3.

Le code ne marche plus. On le corrige avec des getters ("Code » Generate… » getter/setter").

On ne veut pas pouvoir changer la valeur de la carte une fois créée. C'est illogique en
vrai et dans le code on aurait des variables septDeCoeur qui seraient en fait des as
de pique…

Lorsque l'on aura le choix on utilisera toujours des objets non modifiables (on dit
aussi non mutables). C'est un design pattern (façon de faire) commun. Il s'appelle :
value object

https://wiki.centrale-med.fr/informatique/public:java:misc#controlling_access_to_members_of_a_class
https://wiki.centrale-med.fr/informatique/public:java:misc#packages
https://en.wikipedia.org/wiki/Value_object
https://en.wikipedia.org/wiki/Value_object

2026/02/04 11:09 5/11 Classe Card

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Card.java

package com.mco.battle;

public class Card {
 int value;
 String color;

 public Card(int value, String color) {
 this.value = value;
 this.color = color;
 }

 public int getValue() {
 return value;
 }

 public String getColor() {
 return color;
 }
}

Main.java

package com.mco;

import com.mco.battle.Card;

public class Main {

 private static void testCreationCard() {
 Card setDeCoeur = new Card(7, "coeur");

 System.out.println(setDeCoeur.getValue());
 System.out.println(setDeCoeur.getColor());
 }

 public static void main(String[] args) {
 testCreationCard();
 }
}

v2 Affichage d'une carte à l'écran

Si on essaie d'afficher une carte :

System.out.println(new Card(7, "coeur"));

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last update:
2016/02/10 09:31 public:mco-2:un_projet_complet:card https://wiki.centrale-med.fr/informatique/public:mco-2:un_projet_complet:card

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:09

On obtient :

com.mco.battle.Card@511d50c0

Dès que l'on a besoin de transformer un objet en chaîne de caractères (ici la fonction
System.out.println affiche une chaîne de caractères à l'écran), Java utilise la méthode String
toString().

Comme nous n'avons pas défini de méthode toString, c'est celle de la classe Object qui est utilisée.

Pour en faire une nous-mêmes : "code » generate » toString"

L'annotation @Override signifie que nous avons récrit une méthode d'une classe ancêtre. Par défaut
toute nouvelle classe hérite d'Object qui définit les méthodes que toutes les classes doivent avoir.

Notions vues :

transformer un objet en chaîne de caractères avec String toString
première forme d'héritage : toute classe hérite de la classe Object.

Card.java

package com.mco.battle;

public class Card {
 int value;
 String color;

 public Card(int value, String color) {
 this.value = value;
 this.color = color;
 }

 public int getValue() {
 return value;
 }

 public String getColor() {
 return color;
 }

 @Override
 public String toString() {
 return "Card{" +
 "value=" + value +
 ", color='" + color + '\'' +
 '}';

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://wiki.centrale-med.fr/informatique/public:java:misc#annotations
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/04 11:09 7/11 Classe Card

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 }
}
</code java>

=== Main.java ===

<code java>
// snip
 private static void testCreationCard() {
 Card setDeCoeur = new Card(7, "coeur");

 System.out.println(setDeCoeur);
 System.out.println(setDeCoeur.getValue());
 System.out.println(setDeCoeur.getColor());
 }

/snip

v3 : les couleurs comme une énumération

Passer les valeurs et les couleurs de la carte en paramètres ne semble pas être une bonne idée (code
smell). De façon générale, pour gérer les constantes d'un type particulier et éviter de se tromper, on
utilise en Java des Enum. En tous les cas, on n'utilise pas des chaînes de caractères comme on l'a fait
jusqu'à présent. C'est un magic number et en code, c'est MAL.

On va le faire ici pour les couleurs, peut-être que ce sera également utile pour les valeurs, mais nous
ne le ferons pas.

Notions vues :

les Enum
le code smell, 6ème sens du codeur
design pattern : pas de magic number
composition des toString
le switch comme structure de contrôle

Colors.java

On se place dans le bon package puis "Clic droit » New » Java Class" Choisissez ensuite "Enum"
comme type.

package com.mco.battle;

public enum Colors {
 SPADE,
 HEART,

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://blog.codinghorror.com/code-smells/
http://blog.codinghorror.com/code-smells/
https://wiki.centrale-med.fr/informatique/public:java:misc#enum_type
https://fr.wikipedia.org/wiki/Nombre_magique_(programmation)#Constantes_num.C3.A9riques_non-nomm.C3.A9es
https://wiki.centrale-med.fr/informatique/public:java:misc#enum_type
http://blog.codinghorror.com/code-smells/
http://stackoverflow.com/questions/47882/what-is-a-magic-number-and-why-is-it-bad
https://wiki.centrale-med.fr/informatique/public:java:misc#control_flow_statements

Last update:
2016/02/10 09:31 public:mco-2:un_projet_complet:card https://wiki.centrale-med.fr/informatique/public:mco-2:un_projet_complet:card

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:09

 DIAMOND,
 CLUB;

 @Override
 public String toString() {
 switch (this) {
 case SPADE:
 return "spade";
 case HEART:
 return "heart";
 case DIAMOND:
 return "diamond";
 case CLUB:
 return "club";
 default:
 return "other";
 }
 }
}

Card.java

Après avoir changé le type de color, on peut supprimer les getters et le toString pour les
regénérer.

package com.mco.battle;

public class Card {
 int value;
 Colors color;

 public Card(int value, Colors color) {
 this.value = value;
 this.color = color;
 }

 public int getValue() {
 return value;
 }

 public Colors getColor() {
 return color;
 }

 @Override
 public String toString() {
 return "Card{" +
 "value=" + value +
 ", color=" + color +

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/04 11:09 9/11 Classe Card

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 '}';
 }
}

Main.java

Il n'y a qu'à la création de la carte qu'il faut toucher. Le reste fonctionne toujours.

// snip
Card setDeCoeur = new Card(7, Colors.HEART);
//snip

v4 : Egalité entre cartes

En java l'opérateur == sert à deux choses :

tester l'égalité pour les types primitifs (types sans majuscule : nombres et booléens en gros)
tester l'égalité des objets. Si ce sont les mêmes ou pas.

Exemple du code ci-dessous exécuté dans le main :

 private static void testEqualityCard() {
 Card asDePique = new Card(1, Colors.SPADE);
 System.out.println(asDePique == asDePique);
 System.out.println(asDePique == new Card(1, Colors.SPADE));
 }

Pour l'égalité de contenu, on utilise la méthode equals définie dans la classe Object qu'il faut
(comme toString) regénérer ("Code » Generate » equals() and hashcode()").

On peut voir ces méthodes comme des méthodes de conversion d'objets :

String toString() : convertit un objet en chaîne de caractères,
boolean equals(Object o) : convertit en booléen si le contenu est le même qu'un autre
int hashcode() : convertit un objet en nombre.

On ne génère jamais equals tout seul. On lui associe toujours hashcode car deux
objets égaux avec equals doivent avoir le même hashcode.

C'est à savoir si vous faites vous-même ces méthodes pour vos objets.

Notions vues :

les types primitifs
égalité entre objets (la note)
les méthodes equals et hashcode.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://wiki.centrale-med.fr/informatique/public:java:misc#type_primitif
https://wiki.centrale-med.fr/informatique/public:java:misc#using_objects
http://www.ideyatech.com/effective-java-equals-and-hashcode/

Last update:
2016/02/10 09:31 public:mco-2:un_projet_complet:card https://wiki.centrale-med.fr/informatique/public:mco-2:un_projet_complet:card

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:09

Card.java

On laisse Intellij générer les méthodes. C'est un peu sale mais ça fait le job. Regardez
http://www.ideyatech.com/effective-java-equals-and-hashcode/ qui explicite les façons de faire
décrites dans ce magnifique livre qu'est effective Java.

Main.java

//snip
 private static void testEqualityCard() {
 Card asDePique = new Card(1, Colors.SPADE);
 System.out.println(asDePique == asDePique);
 System.out.println(asDePique == new Card(1, Colors.SPADE));
 System.out.println(asDePique.equals(new Card(1, Colors.SPADE)));
 System.out.println(new Card(1, Colors.SPADE).equals(asDePique));
 }
//snip

v5 : Constructeur par défaut

Moins il y a de paramètres à une méthode, mieux c'est. Uncle Bob dans son livre clean code dit que le
meilleur nombre de paramètres pour une méthode est 0.

Notions vues :

minimiser le nombre de paramètres d'une méthode
mot clé this

Card.Java

//snip
 public Card() {
 this(1, Colors.SPADE);
 }
//snip

Diagramme UML final

http://www.ideyatech.com/effective-java-equals-and-hashcode/
http://www.amazon.fr/Effective-Java-Joshua-Bloch/dp/0321356683
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.amazon.fr/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
http://stackoverflow.com/questions/174968/how-many-parameters-are-too-many/175035#175035
http://stackoverflow.com/questions/174968/how-many-parameters-are-too-many/175035#175035
http://stackoverflow.com/questions/174968/how-many-parameters-are-too-many/175035#175035
https://wiki.centrale-med.fr/informatique/public:java:misc#using_the_this_keyword

2026/02/04 11:09 11/11 Classe Card

WiKi informatique - https://wiki.centrale-med.fr/informatique/

enum Colors {
 SPADE
 DIAMOND
 HEART
 CLUB
}

class Card {
-int value
-Colors: color
+Card(int: value, Colors: color)
+Card()

+int getValue()
+Colors getColor()
+String toString()
+boolean equals(Object o)
+int hashcode()
}

Card o-- Colors : color

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:mco-2:un_projet_complet:card

Last update: 2016/02/10 09:31

https://wiki.centrale-med.fr/informatique/_detail/public:mco-2:un_projet_complet:class_card.png?id=public%3Amco-2%3Aun_projet_complet%3Acard
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:mco-2:un_projet_complet:card

	Classe Card
	Configuration du projet
	Créez des classes avec Intellij et la fenêtre projet
	Plan
	Card v1
	Card v1.0
	Card.java
	Main.java

	v1.1 : visibilité
	Changement de package
	Card.java
	Main.java

	v2 Affichage d'une carte à l'écran
	Card.java

	v3 : les couleurs comme une énumération
	Colors.java
	Card.java
	Main.java

	v4 : Egalité entre cartes
	Card.java
	Main.java
	v5 : Constructeur par défaut
	Card.Java

	Diagramme UML final

