
2026/02/04 07:37 1/15 Les notions de base de Python

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Les notions de base de Python

Lien vers la documentation exhaustive: https://docs.python.org/3/

Les données

Les commentaires en Python se font à l'aide de #.

Documentation à consulter.

Les 5 types de base

Chaînes de caractères
Entiers
Réels
Complexes (la notation utilise j à la place de i)
Booléens

Afin de connaître le type d'un objet on peut utiliser la fonction type:

>>> type(42)
<type 'int'>

On peut changer le type d'un objet avec des fonctions telles que:

str()
float()
int()
complex()
bool()

Variables

Une variable est un nom auquel est associée un objet. Pour associer un nom à un objet on utilise
l’opérateur d’affectation = tel que:

nom = objet

A gauche de l’opérateur = se trouve un nom (en gros, quelque chose ne pouvant commencer par un
nombre) et à droite un objet.

https://docs.python.org/3/
https://docs.python.org/3.4/library/stdtypes.html#built-in-types

Last update: 2016/12/05 17:29 public:python:bases https://wiki.centrale-med.fr/informatique/public:python:bases

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

Un nom n'est PAS une chaîne de caractères. Une chaîne de caractère est un
objet alors qu’un nom n’est qu’un alias vers un objet.

Il est important de comprendre que l’opérateur d’affectation = n’est pas symétrique. A gauche des
noms.

Attardons nous un moment sur ces notions car elles seront cruciales plus tard pour appréhender les
possibilités offertes par les objets.

Considérons le programme suivant:

x = 1
y = 1
x = y

La figure montre le résultat après chaque instruction. On voit qu’un même objet peut parfaitement
avoir plusieurs noms. Cependant, à un nom correspond un unique objet. Les objets qui n’ont plus de
noms sont supprimés à intervalles réguliers (c’est ce qu’on appelle le garbage collector) puisque l’on
ne peut plus y accéder.

Le mécanisme décrit précédemment (remplacement des noms par les objets référencés avant
exécution de l’instruction) montre que l’on peut affecter plusieurs noms en même temps, comme le
montre l’exemple suivant:

i = 2
j = 3
i, j = j, i

Les structures de données

Les listes

https://docs.python.org/3.4/tutorial/datastructures.html#more-on-lists

Création Directe

On peut créer une liste directement:

Soit en créant une liste vide puis en ajoutant des éléments un à un.

l = []

https://wiki.centrale-med.fr/informatique/_detail/nom_et_objets.png?id=public%3Apython%3Abases
https://docs.python.org/3.4/tutorial/datastructures.html#more-on-lists

2026/02/04 07:37 3/15 Les notions de base de Python

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Soit en créant la liste déjà pré-remplie.

l = [1, 2, True, "Hello World"]

. Cette liste contient 4 éléments et est indexée à 0.

La fonction len() permet d'obtenir la longueur de la liste. Sur le dernier exemple,

len(l)

rend 4. On peut alors accéder aux éléments de la liste à l'aide d'un indice variant entre 0 et len(l) - 1.
Ainsi avec

l[3]

on obtient la chaîne de caractère "Hello World".

Création à l'aide de range()

La commande range permet de créer des listes de nombres.

https://docs.python.org/3/library/stdtypes.html#range

Ajout, suppression d'éléments d'une liste

Regarder la documentation indiquée au début de la partie.

Copie d'une sous-liste

On peut copier une partie d'une liste. Pour copier la liste l à partir de l'indice i jusqu'à l'indice j
avec un pas de k par exemple:

l[i:j:k]

Il n'est pas nécessaire de renseigner tous les champs.

Essayez l[::3] ou l[1::5] etc… (il faut bien évidemment des listes assez longues).

https://docs.python.org/3/library/stdtypes.html#range

Last update: 2016/12/05 17:29 public:python:bases https://wiki.centrale-med.fr/informatique/public:python:bases

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

Les dictionnaires

D o c u m e n t a t i o n :
https://docs.python.org/3.4/library/stdtypes.html?highlight=dict#mapping-types-dict

Un dictionnaire (ou tableau associatif, voir http://fr.wikipedia.org/wiki/Tableau_associatif) permet
d'associer des clés à des valeurs, ces clés pouvant être des chaines de caractères ou des nombres.
C'est en gros comme une 'liste' où l'on remplace les indices par à peu près que l'on veut.

d = {} #on crée un dictionnaire vide
d["quarante deux"] = 42 #on associe à la clé "quarante deux" la valeur 42
d[3.14] = "pi" #on associe à la clé 3.14 la valeur "pi"
print("quarante deux" in d)
print(42 in d)
for cle in d:
 print("cle :", cle, "valeur :", d[cle])

Un dictionnaire n'est pas ordonné

Les ensembles : set

https://docs.python.org/3.4/library/stdtypes.html?highlight=dict#set

Un ensemble permet de garder des données en mémoire de manière non indexée. Contrairement aux
listes, où l'on rangeait les éléments dans des cases distinctes, on ne peut pas accéder aux éléments
d'un ensemble d avec d[i].

Notion d'objets mutables

Les objets que nous avons rencontrés sont mutables, c'est à dire que lorsque on crée une liste l =
[1, 2, 3], il est toujours possible de changer la valeur d'un indice, ou d'ajouter un élément.

Cela n'est toutefois pas possible avec les tuples par exemple.

https://docs.python.org/3.4/library/stdtypes.html?highlight=dict#tuples

Un tuple peut se créer de la manière suivante:

t = (1, 2, 3)

https://docs.python.org/3.4/library/stdtypes.html?highlight=dict#mapping-types-dict
http://fr.wikipedia.org/wiki/Tableau_associatif
https://docs.python.org/3.4/library/stdtypes.html?highlight=dict#set
https://docs.python.org/3.4/library/stdtypes.html?highlight=dict#tuples

2026/02/04 07:37 5/15 Les notions de base de Python

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Essayez maintenant des commandes telles que:

t[0] = 10
t.append(42)

Cela nous renvoie alors des erreurs.

Pour ajouter un élément, il faut créer un autre tuple:

t2 = t + (1,)

Le frozenset est un set (ensemble), mais cette fois non mutable.

Structures de contrôle

Comparaisons

https://docs.python.org/3.4/library/stdtypes.html#comparisons

Blocs

On a souvent besoin de n'exécuter un certain bout de code que si une comparaison particulière est
vraie(True). Ce bout de code est appelé bloc

Tous les blocs sont définis de la même manière:

Ce qui va identifier le bloc pour son exécution (une condition, son nombre d'exécution, son1.
nom).
Les instructions le constituant.2.

Pour séparer les blocs les un des autres, et savoir ce qui le défini , le langage Python utilise
l'indentation(4 espaces): un bloc est donc une suite d'instructions ayant la même indentation.

question = "A quelle heure on mange ?"
print("Question :")
print(question)
print("Reponse :")
if question == "la vie, l’univers et le reste":
 reponse_partielle = 1 + 2 + 3 + 4 + 5 + 6
 reponse = reponse_partielle * 2
 print(reponse)
else:
 print("je ne sais pas.")

Ce code contient 3 blocs: le bloc principal, puis les 2 blocs de conditions (respectivement if et else).

https://docs.python.org/3.4/library/stdtypes.html#comparisons

Last update: 2016/12/05 17:29 public:python:bases https://wiki.centrale-med.fr/informatique/public:python:bases

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

L’indentation est donc primordiale en python.

Nous allons utiliser la convention classique : chaque bloc sera indenté de 4 espaces
supplémentaire par rapport au bloc parent. Pour ne pas passer son temps à compter
les espaces à ajouter pour chaque bloc, on pourra utiliser la la touche tabulation en
modifiant son fonctionnement (remplacement du caractère tabulation par des
espaces, cela est déjà prédéfini avec PyCharm) et est disponible dans tout bon
éditeur.

En python, toute ligne définissant un nouveau bloc doit être terminée par le caractère :

Conditions si/sinon si/sinon (if/elif/else)

https://docs.python.org/3/reference/compound_stmts.html#the-if-statement

Exemple:

x = 7
if x < 0:
 print("Strictement negatif")
elif x == 0:
 print("vaut Zero")
elif x % 2 == 0:
 print("pair strictement positif")
else:
 print("impair strictement positif")

Il est à noter que elif et else sont optionnels.

Boucle while

https://docs.python.org/3/reference/compound_stmts.html#the-while-statement

b = 6
while b > 0:
 print(b)
 b = b - 1

On peut aussi inclure des blocs dans des blocs comme le montre le programme suivant :

b = 6
while b > 0:

https://docs.python.org/3/reference/compound_stmts.html#the-if-statement
https://docs.python.org/3/reference/compound_stmts.html#the-while-statement

2026/02/04 07:37 7/15 Les notions de base de Python

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 print(b)
 b = b - 1
 if b == 2:
 print("b vaut 2")

Boucle for

Les itérateurs

Pour faire simple, les littérateurs sont des objets qui permettent de créer des suites de données.
Prenons un exemple connu: range()

range permet de créer des itérateurs : range(10) est un itérateur qui va renvoyer les valeurs de 0 à 9.

Pour utiliser for, il faut un itérateur tel que: for x in mon_iterateur est la syntaxe.

Exemple:

mon_iterateur = range(10)
for y in mon_iterateur:
 print(x)

Essayez ce code et comprenez le : les itérateurs sont de puissants objets python.

Vous pouvez créer votre propre itérateur à l'aide de l’instruction yield

def mon_iterateur(valeur):
 for x in range(valeur):
 yield valeur * x

for x in mon_iterateur(5):
 print(x)

Ce qui va s'afficher sera:

0
5
10
15
20

On peut également boucler sur une liste, qui est un objet itérable:

l = ["Jet fuel", "can't", "melt", "steel beams"]
for mot in l:
 print(mot)

Last update: 2016/12/05 17:29 public:python:bases https://wiki.centrale-med.fr/informatique/public:python:bases

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

Méthodes, fonctions et modules

Les fonctions

Motivations

https://docs.python.org/3/reference/compound_stmts.html#function-definitions

Il n'est jamais bon de copier/coller un bout de programme qui se répète plusieurs fois (corriger un
problème dans ce bout de code reviendrait à le corriger autant de fois qu'il a été dupliqué…). Il est de
plus souvent utile de séparer les éléments logiques d'un programme en unités autonomes, ceci rend
le programme plus facile à relire.

Pour cela, on utilise des fonctions.

Une fonction est un bloc (revoir si nécessaire) auquel on donne un nom (le nom de la fonction) qui
peut être exécuté lorsqu'on l'invoque par son nom.

La partie de programme suivant défini une fonction:

def bonjour():
 print("Salutations")

La première ligne est la définition du bloc fonction. Il contient:

un mot clé spécial précisant que l'on s'apprête à définir une fonction: def
le nom de la fonction. Ici bonjour
des parenthèses qui pourront contenir des paramètres (on verra ça plus tard)
le : qui indique que la ligne d'après va commencer le bloc proprement dit

Ensuite vient le bloc fonction en lui même qui ne contient qu'une seule ligne.

Si on exécute le bloc précédent, il ne se passe rien. En effet on n'a fait que définir la fonction. Pour
l'utiliser, ajoutez

bonjour()

à la suite du bloc.

Une fonction s'utilise toujours en faisant suivre son nom d'une parenthèse contenant
ses paramètres séparés par une virgule (notre fonction n'a pour l'instant pas de
paramètres). Donner juste son nom ne suffit pas à l'invoquer.

https://docs.python.org/3/reference/compound_stmts.html#function-definitions

2026/02/04 07:37 9/15 Les notions de base de Python

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Paramètres d'une fonction

def plus_moins(nombre):
 if nombre > 42:
 print("Supérieur à 42")
 else:
 print("Inférieur à 42")

Cette fonction nécessite donc un paramètre pour être invoquée. Testez alors

plus_moins(17)

La variable nombre sera associée à l'objet entier de valeur 17 dans la fonction. La variable nombre
n'existe que dans la fonction.

Les paramètres d'une fonction sont des NOMS de variables qui ne seront connus qu'à
l'intérieur de la fonction. À l'exécution de la fonction, le nom de chaque paramètre est
associé à l'objet correspondant.

Retour d'une fonction

Toute fonction rend une valeur. On utilise le mot-clef return suivi de la valeur à rendre pour cela. Le
fonction suivante rend le double de la valeur de l'objet passé en paramètre:

def double(valeur):
 x = valeur * 2
 return x

Il ne sert à rien de mettre des instructions après une instruction return car dès qu'une fonction
exécute cette instruction, elle s'arrête en rendant l'objet en paramètre. Le retour d'une fonction est
pratique pour calculer des chose et peut ainsi être affecté à une variable.

Ainsi, avec la fonction double précédemment définie, testez:

x = double(21)
print(x)

Le code précédent exécute la fonction de nom double avec comme paramètre un entier de valeur
21. La fonction commence par associer à une variable nommée valeur l'objet passé en paramètre
(ici un entier de valeur 21), puis crée une variable de nom x à laquelle est associée un entier de
valeur 42 et enfin se termine en retournant comme valeur l'objet de nom x. Les variables valeur et
x définies à l'intérieur de la fonction sont ensuite effacés (pas les objets, seulement les noms).

Cette valeur retournée est utilisée par la commande print pour être affichée à l'écran.

Les noms de paramètres d'une fonction et les variables déclarée à l'intérieur de la

Last update: 2016/12/05 17:29 public:python:bases https://wiki.centrale-med.fr/informatique/public:python:bases

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

fonction n'existent qu'à l'intérieur de celle-ci. En dehors de ce blocs, ces variables
n'existent plus.

Fonctions v.s. méthodes

Python vient avec de nombreuses fonctions que l'on peut utiliser. Vous en connaissez déjà comme
range, len, ou encore type.

Ne confondez pas fonctions et méthodes. Une fonction s'exécute toute seule alors qu'une méthode a
besoin d'un objet sur lequel elle s'applique (celui avant le .). Vous pouvez voir ça comme un 1er
paramètre indispensable à l'exécution d'une méthode. Considérez le micro-programme suivant:

ma_liste = range(5)
ma_liste.append(10)

La première ligne exécute une fonction (range) avec un paramètre qui rend une liste. La seconde
instruction est une méthode (append) qui s'applique à l'objet de nom ma_liste et qui a un
paramètre (ici un entier valant 10).

Le point un peu délicat est que certaines méthodes ne rendent rien et modifient l'objet sur lequel elle
est appliquée, c'est le cas de la méthode append, insert ou encore reverse, alors que d'autres
rendent des objets, c'est le cas de index par exemple.

ma_liste = range(5)
ma_liste.insert(2, "coucou")
un_indice = ma_liste.index("coucou")
print(un_indice)
print(ma_liste[un_indice])

Visibilité d'un objet

Les noms des objets sont accessibles à l’intérieur du bloc unitaire dans lequel ils sont déclarés
ainsi que dans les blocs unitaires contenus dans celui-ci. Les blocs unitaires sont~:

les fonctions,
les modules (nous verrons cela),
les classes (que nous ne verrons pas).

Les variables définies dans une fonction cachent les variables définis dans des blocs supérieurs. Ainsi,
le code suivant imprime 42 puisque la variable x déclarée dans le bloc unitaire de la fonction n'existe
plus dans son bloc parent. La variable x valant 42 est masquée dans la fonction par une nouvelle
variable de nom x valant 24.

def f():
 x = 24

x = 42
f()

2026/02/04 07:37 11/15 Les notions de base de Python

WiKi informatique - https://wiki.centrale-med.fr/informatique/

print(x)

De la même manière, que donne le programme suivant ?:

def f(parametre):
 parametre = 24

f(2)
print(parametre)

Les noms déclarés dans une fonction, y compris ses paramètres, restent
dans la fonction.

Récursion

Modification d'objets dans une fonction

Dans un programme récursif, on a souvent besoin de modifier le même objet plusieurs fois. Même si
la fonction récursive ne rend rien. Pour cela, on doit modifier les objets passés en paramètres. Pour
comprendre comment cela marche, considérez la fonction suivante~:

def ajoute_max(liste_en_parametre):
 maximum_liste = max(liste_en_parametre)
 liste_en_parametre.append(maximum_liste)

Cette fonction ajoute à la fin d'une liste passée en paramètre son maximum (au passage, on a apprit
une nouvelle fonction, max. regardons le programme suivant qui utilise cette fonction:

x = list(range(1, 6, 2))
ajoute_max(x)
print(x)

La figure suivante montre ce qu'il s'est passé dans le monde des noms et des objets. Il reste un objet
sans nom après l'exécution de la fonction (un entier valant 9), il est détruit. On a pu ainsi modifier un
objet sans utiliser de retour de fonction. C'est une technique puissante mais à n'utiliser qu'à bon
essient.

Modules

Un module (aussi appelé bibliothèque ou library) est un ensemble de fonctions utiles, utilisable dans
de nombreux programmes. Plutôt que de refaire à chaque fois ces fonctions ou (c'est pire) de les
copier/coller dans chaque programme on les importe directement pour les utiliser.

Il existe de nombreux modules, réalisant une foultitude d'opérations. Avant de se

https://wiki.centrale-med.fr/informatique/_media/public:algorithmie:obj_nom.pdf

Last update: 2016/12/05 17:29 public:python:bases https://wiki.centrale-med.fr/informatique/public:python:bases

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

mettre à coder quelque chose, commencez toujours par vérifier google est votre ami)
s'il n'existe pas un module tout fait. Vous gagnerez du temps.

Python fournit déjà de nombreux modules, les plus courants sont décrits là :
https://docs.python.org/3.4/library/index.html.

Pour utiliser un module, il faut commencer par l'importer avec la commande import. Par exemple
avec le module math.

Importation directe du module. On mets le nom complet avant chaque appel :

import math
pi_sur_deux = math.pi / 2 #PI est défini dans le module math
x = math.cos(pi_sur_deux) #on utilise la fonction cosinus du module math

Importation d'une méthode particulière. Ceci peut être dangereux si des fonctions différentes
possèdent le même nom.

from math import cos, pi #importation directe de cos et de pi
x = cos(pi / 2)

Importation de toutes les fonctions du modules.

from math import *
y = log(e)

Cette page vous en explique plus en prenant le module random comme exemple.

Retour sur les objets

Comme on l'a vu les objets sont partout en python, qu'ils soient int, str, float, ou même des fonctions.
Si vous avec bien compris l'exemple de la récursion et du la modification d'un objet passé en
paramètre, alors vous vous demandez peut-être "pourquoi ne pas envoyer une fonction en paramètre
d'une autre fonction ?"

Eh bien cela est tout à fait possible, exemple:

def produit(x, y):
 return x * y

def calcul(fonction, z):
 return z + fonction(2, 17)

print(calcul(produit, 8)) #On envoie l'objet associé au nom 'produit' à la
fonction 'calcul'

https://docs.python.org/3.4/library/index.html
http://www.dsimb.inserm.fr/~fuchs/python/python-node9.html

2026/02/04 07:37 13/15 Les notions de base de Python

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Ce programme affichera alors 42 ! Essayez-le pour vous en persuader.

Les fichiers : lecture, écriture

Consulter https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

Lecture

Pour lire le fichier ligne par ligne

f = open('fichier.txt', 'r')

for ligne in f:
 print(l)

On peut aussi compter le nombre de mots dans le texte, par exemple:

f = open('fichier.txt', 'r')
nombre_mots = 0

for ligne in f:
 ligne = ligne.strip("\n")
 mots = ligne.split(' ')

 nombre_mots += len(mots)

print(nombre_mots)
f.close()

Essayez ce code avec un fichier .txt de votre choix.

Au lieu de juste compter les mots, vous pouvez même les garder dans un ensemble !

f = open('fichier.txt', 'r')
ensemble_mots = set()

for ligne in f:
 ligne = ligne.strip("\n")
 mots = ligne.split(' ')

 ensemble_mots.update(mots) # Regarder les opérations sur les ensembles
!

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/2/library/sets.html

Last update: 2016/12/05 17:29 public:python:bases https://wiki.centrale-med.fr/informatique/public:python:bases

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:37

print(ensemble_mots)
print(len(ensemble_mots))
f.close()

Ce code n'est pas parfait, par exemple, s'il y a des mots en fin de phrase par exemple, ils seront
comptés en double à cause du '.'. Ici, ce qui est compté est la longueur de l'ensemble, ie le nombre
de mots différents utilisés.

Écriture

Pour lire-écrire, ouvrez le fichier avec 'r+' au lieu de 'r'. Pour l'écriture seule, 'w'.

Ouvrir en écriture un fichier existant, l'efface. Pour ajouter des choses à la fin d'un
fichier on utilise 'a' (pour append)

Utilisez ensuite la méthode write():

f = open('fichier', 'w')
f.write('For the night is dark and full of terrors')
f.close()

Bonnes pratiques

Revenons un moment sur les bonnes pratiques, et notamment de la PEP8.

PEP8 https://www.python.org/dev/peps/pep-0008/

Voici quelques conventions de bonne pratique à mettre en place:

Les indentations se font avec 4 espaces par niveau.
Les imports se font librairie par librairie: www.python.org/dev/peps/pep-0008/#imports
Pour les espaces blancs:
https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
Nommer variables et fonctions:
https://www.python.org/dev/peps/pep-0008/#descriptive-naming-styles

Il faut se souvenir qu'un nom doit être clair et informatif cela permet une relecture aisée !

Rédacteurs

Augustin Agbo-Kpati
François Brucker

https://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
https://www.python.org/dev/peps/pep-0008/#descriptive-naming-styles

2026/02/04 07:37 15/15 Les notions de base de Python

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Pascal Préa

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:python:bases

Last update: 2016/12/05 17:29

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:python:bases

	Les notions de base de Python
	Les données
	Les 5 types de base
	Variables
	Les structures de données
	Les listes
	Création Directe
	Création à l'aide de range()
	Ajout, suppression d'éléments d'une liste
	Copie d'une sous-liste

	Les dictionnaires
	Les ensembles : set
	Notion d'objets mutables

	Structures de contrôle
	Comparaisons
	Blocs
	Conditions si/sinon si/sinon (if/elif/else)
	Boucle while
	Boucle for
	Les itérateurs

	Méthodes, fonctions et modules
	Les fonctions
	Motivations
	Paramètres d'une fonction
	Retour d'une fonction
	Fonctions v.s. méthodes

	Visibilité d'un objet
	Récursion
	Modification d'objets dans une fonction

	Modules

	Retour sur les objets
	Les fichiers : lecture, écriture
	Lecture
	Écriture

	Bonnes pratiques
	Rédacteurs

