
2026/02/04 12:26 1/8 Apprentissage par renforcement : premiers pas

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Apprentissage par renforcement : premiers pas

Dans ce TP nous allons décrire le comportement d'un agent se déplaçant aléatoirement dans un
environnement très simple.

Pour établir développer des algorithmes d’apprentissage par renforcement, il est nécessaire de
caractériser deux entités:

Un agent : l'agent est la partie du code qui implémente le plan d'actions (ou "politique"). Il a la
capacité :

de percevoir son environnement (à l'aide d'observations)
d'agir sur son environnement à l'aide d'actions
$-->$ la politique décide des choix d'actions en fonction des observations

Un environnement :
Il s'agit d'un simulateur du monde extérieur à l'agent. Il réagit aux actions de l'agent en
modifiant son état.
L'environnement transmet à l'agent deux types de signaux :

les observations
les récompenses (gratification des actions)

Nous allons regarder comment programmer ces deux entités pour pouvoir réaliser des simulations
simples.

Structure du code

Dans un projet VSCode, vous commencerez par développer deux classes : la classe Agent et la
classe Environnement.

Classe Environnement

On considère ici que les simulations se déroulent sur un nombre limité de pas de temps (ici 10).

Voici le constructeur :

class Environment:
 def __init__(self):
 self.state = 0
 self.steps_left = 10

Dans le cas général, l'environnement initialise également son état. Dans ce cas simple, l'état est un
simple compteur qui limite le nombre de pas de temps.

L'état de l'environnement est lu à l'aide de la méthode get_observation(). Il s'agit habituellement
d'une fonction de l'état courant (la mesure). On suppose ici que la méthode retourne directement
l'état courant (environnement totalement observable):

def get_observation(self):

Last update: 2025/11/25 12:10 public:rl_tp1 https://wiki.centrale-med.fr/informatique/public:rl_tp1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 12:26

 return self.state

La méthode get_actions() permet à l'agent de connaître la liste des actions qu'il peut exécuter.
Normalement, le jeu d'actions peut changer au cours du temps, certaines actions devenant
impossibles dans certains état. Ici seules deux actions sont possibles, encodées par les entiers 0' et 1.

def get_actions(self):
 return [0, 1]

La méthode is_done() signale la fin de l'épisode (atteinte lorsque le compteur vaut 0).

def is_done(self):
 return self.steps_left == 0

Enfin, la méthode action() fait évoluer l'état de l'environnement en fonction des actions de l'agent.
Dans le cas général, la méthode modifie l'état en fonction de l'action passée en paramètre, et
retourne le signal de récompense. De plus, le nombre de pas est mis à jour afin que la simulation
s'arrête lorsque la limite est atteinte.

Dans cet exemple simple,

l'action n'est pas prise en compte et l'état n'évolue pas.
la récompense est tirée au hasard.

def action(self, action):
 if self.is_done():
 raise Exception("Game is over")
 self.steps_left -= 1
 return random.random()

La classe Agent

La classe Agent est plus simple et ne contient que deux méthodes :

le constructeur
la méthode de mise à jour qui effectue une itération de l'environnement

Voici le constructeur. Il contient un compteur qui conserve le nombre total e récompenses
accumulées.

class Agent:
 def __init__(self):
 self.total_reward = 0.0

La méthode de mise à jour prend comme argument une instance d l'environnement et effectue les
opérations suivantes :

2026/02/04 12:26 3/8 Apprentissage par renforcement : premiers pas

WiKi informatique - https://wiki.centrale-med.fr/informatique/

observer l'environnement
lire le répertoire d'actions possibles
choisir une action et la transmettre à l'environnement
lire la récompense et mettre à jour le compteur

def step(self, env):
 current_obs = env.get_observation()
 actions = env.get_actions()
 reward = env.action(random.choice(actions))
 self.total_reward += reward

Ici bien sûr, l'agent ignore l’observation et se contente de choisir une action au hasard.

Programme principal

Créez maintenant un programme principal qui crée les deux classes et exécute un épisode :

env = Environment()
agent = Agent()

while not env.is_done():
 agent.step(env)

print("Total reward got: %.4f" % agent.total_reward)

A faire:

Faites tourner cet environnement plusieurs fois et vérifiez que la somme des
récompenses obtenues varie à chaque fois.

Simulation d'un Monde-grille

Les mondes-grilles (Grid worlds) permettent de simuler de petits labyrinthes dans lesquels les actions
de l'agent se limitent souvent à des déplacements dans les quatre directions cardinales (Nord, Sud,
Est et Ouest), un peu comme dans le jeu Pacman. Ils ont l'avantage de présenter un nombre limité
d'états et de traiter les problèmes d'apprentissage à l'aide de tables de correspondance (Look-up
Tables). Les cases contiennent des récompenses ou des pièges qui doivent être attrapés ou évités par
l'agent.

Nous considérons ici un labyrinthe extrêmement simple à 8 cases :

Last update: 2025/11/25 12:10 public:rl_tp1 https://wiki.centrale-med.fr/informatique/public:rl_tp1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 12:26

L'état est défini comme la position de l'agent sur la grille. Il peut donc prendre 8 valeurs
possibles et l'espace d'état est l'ensemble discret constitué par les 8 numéros de cases:

$$\mathcal{S} = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

Sur le dessin ci-dessus, l'agent est dans la case 3 et l'état de l’environnement vaut
donc 3.

Les actions correspondent aux mouvements de l'agent sur la grille. L'espace des actions est
constitué par les quatre directions cardinales :

$$\mathcal{A} = \{N, S, E, W\}$$

Attention cependant, toutes les actions ne sont pas autorisées dans toutes les
positions. Ainsi, à la position 1, seules les actions E et S sont autorisées.

Les cases 1, 2, 3, 4, et 5 n'apportent aucune récompense. Par contre les cases 6 et 8 apportent
une pénalité de -10 et la case 7 apporte un bonus de +10.

Nous allons modifier pas à pas le squelette d'agent et d'environnement précédent pour pouvoir
simuler les déplacements d'un agent sur un tel monde.

L'Environnement

L'évolution de l'environnement dépend à la fois de l'état courant et de l'action choisie. Ainsi si l'état
courant est 3 et l'action est "E" alors l'état prend la valeur 4 et la récompense est 0.

1. Le changement d'état et le calcul de la récompense seront implémentés au sein de la
méthode action().

Plutôt que d'écrire une suite de tests if … else, on utilisera une table de

https://wiki.centrale-med.fr/informatique/_detail/public:rl_tp1.png?id=public%3Arl_tp1

2026/02/04 12:26 5/8 Apprentissage par renforcement : premiers pas

WiKi informatique - https://wiki.centrale-med.fr/informatique/

correspondance sous la forme d'un dictionnaire (à la manière d'un graphe):

next = {
 1 : {"S" : 6, "E" : 2},
 2 : {"W" : 1, "E" : 3},
 3 : {"W" : 2, "S" : 7, "E" : 4},
 4 : {"W" : 3, "E" : 5},
 5 : {"W" : 4, "S" : 8},
 6 : {"N" : 1},
 7 : {"N" : 3},
 8 : {"N" : 5}
 }

ainsi next[1]["S"] vaut 6 (l'agent se retrouve dans la case 6 s'il part de la case 1
dans la direction sud).

La récompense est la valeur qui doit être retournée par la méthode action(). Elle
n'est plus aléatoire mais doit être lue dans un dictionnaire en fonction de la valeur de
l'état:

reward = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: -10, 7: 10, 8: -10}

2. Pour l'initialisation, on suppose que la position initiale de l'agent est choisie aléatoirement
parmi les 5 premières positions

def __init__(self):
 self.state = random.randint(1,5)
 self.steps_left = 10

3. La méthode get_actions() prend en compte la valeur de l'état (self.state) pour
déterminer le jeu d'actions possibles à partir de la table de correspondance next.

L'agent

Pour l'agent, pas de changement! Il continue de choisir ses actions au hasard.

Simulation

Dans le programme principal, effectuer un total de 100 simulations et calculer la moyenne et l'écart-
type de la récompense totale.

A faire:

Pour bien comprendre le comportement de l'agent, pensez à afficher la valeur de
l'état, de l'action choisie et de la récompense à chaque pas de temps.

Last update: 2025/11/25 12:10 public:rl_tp1 https://wiki.centrale-med.fr/informatique/public:rl_tp1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 12:26

Calcul d'une fonction de valeur

Afin de rendre notre agent un peu plus "intelligent", nous allons calculer une "fonction de valeur" qui
estime le caractère "propice" ou "funeste" d'un état à partir de la récompense cumulée moyenne
obtenue à partir de cet état.

Si s_t est l'état à l'instant t : $$V(s_t) = E(\sum_{t'=t}^T r_{t'})$$ avec T l'instant final (fin de
l'épisode)

Il est nécessaire pour cela d'ajouter à l'agent une liste les états parcourus au cours de l'épisode. Cette
liste est appelée la trace.

Ainsi, le constructeur de l'agent devient :

class Agent:
 def __init__(self):
 self.total_reward = 0.0
 self.trace = []

Cette trace doit être mise à jour à chaque itération pour obtenir en fin d'épisode la liste de tous les
états parcourus.

A faire : Pour calculer (de façon simplifiée) la fonction de valeur, vous devez mettre
en oeuvre en Python l'algorithme suivant :

V = {1 :0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0}
nb_visites = {1 :0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0}
total_reward_sum = {1 :0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8:
0}
pour i de 1 à N:
 exécuter un épisode
 pour tout s dans agent.trace :
 nb_visites[s] += 1
 total_reward_sum[s] += agent.total_reward
pour tout s dans V:
 V[s] = total_reward_sum[s] / nb_visites[s]

Pour calculer la fonction de valeur, on utilisera N = 100

Politique guidée par la valeur

Pour améliorer sa récompense moyenne, l'agent va maintenant prendre en compte la valeur de l'état
futur pour choisir l'action, autrement dit, si s_t est l'état courant : $$ a_t = \underset{a \in
\mathcal{A}}{\text{argmax }} V(\text{next}(s_t, a))$$

A faire :

2026/02/04 12:26 7/8 Apprentissage par renforcement : premiers pas

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Écrire une méthode step_valeur() dans laquelle l'action est choisie selon la
fonction de valeur (et non plus aléatoirement)

def step_valeur(self, env, V):
 ...

Lancer des simulations avec cette nouvelle méthode de mise à jour et calculer la
récompense moyenne obtenue sur 100 épisodes et comparer au résultat
précédent. Conclusion?

Améliorations

Le calcul exact de la fonction de valeur nécessite de mémoriser l'historique complet des
récompenses. Au lieu de conserver la somme des récompenses, on conserve la liste des récompenses
obtenues.

class Agent:
 def __init__(self):
 self.rewards = []
 self.trace = []

et la mise à jour se fait en ajoutant les récompenses en fin de liste :

def step(self, env):
 ...
 self.rewards += [reward]

En fin d'épisode, la valeur cumulée est calculée séparément pour chaque état rencontré:

pour chaque état s_t de la trace :
calculer la somme des récompenses présente et futures
ajouter la valeur dans total_rewards_sum
incrémenter le nombre de visites

A faire:

Implémentez cette nouvelle méthode de calcul de la fonction de valeur et comparez
les valeurs obtenues à celles de la politique précédente.

Approche actor-critic (facultatif)

L’actor-critic se résume à :

un critic fournissant le signal d’erreur δ,

Last update: 2025/11/25 12:10 public:rl_tp1 https://wiki.centrale-med.fr/informatique/public:rl_tp1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 12:26

un actor ajustant une politique tabulaire directement en fonction de δ,

l’approche actor-critic repose sur deux tables distinctes :

Critic : une table de valeurs d’état V(s).
Actor : une table de politique π(a|s) (probabilités explicites par état et action).

1. Erreur TD

Pour chaque transition (s, a, r, s'), le critic calcule l’erreur de temporal-difference :

δ = r + γ V(s') − V(s)

2. Mise à jour du critic

La table de valeurs est mise à jour directement :

V(s) ← V(s) + α_c · δ

3. Mise à jour de l'acteur

On ajuste la probabilité de l’action choisie et celles des autres actions dans l’état s :

Pour l’action exécutée a :

$$π(a|s) ← π(a|s) + α_a · δ · (1 − π(a|s))$$

Pour toutes les autres actions b ≠ a :

$$π(b|s) ← π(b|s) − α_a · δ · π(b|s)$$

Ces deux mises à jour garantissent que la ligne de la politique dans l’état s reste une distribution
valide (les probabilités restent normalisées si elles étaient normalisées au départ).

A faire - Implémentez la méthode actor-critic dans la classe acteur, - Affichez
l'évolution de la récompense finale obtenue sur 100 épisodes. Conclusion?

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:rl_tp1

Last update: 2025/11/25 12:10

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:rl_tp1

	[Apprentissage par renforcement : premiers pas]
	Apprentissage par renforcement : premiers pas
	Structure du code
	Classe Environnement
	La classe Agent
	Programme principal

	Simulation d'un Monde-grille
	L'Environnement
	L'agent
	Simulation

	Calcul d'une fonction de valeur
	Politique guidée par la valeur
	Améliorations

	Approche actor-critic (facultatif)
	1. Erreur TD
	2. Mise à jour du critic
	3. Mise à jour de l'acteur

