2026/01/09 20:51 1/7 Apprentissage par renforcement : premiers pas

Apprentissage par renforcement : premiers pas

Dans ce TP nous allons décrire le comportement d'un agent se déplacant aléatoirement dans un
environnement tres simple.

Pour établir développer des algorithmes d’apprentissage par renforcement, il est nécessaire de
caractériser deux entités:

e Un agent : I'agent est la partie du code qui implémente le plan d'actions (ou "politique"). Il a la
capacité :
o de percevoir son environnement (a l'aide d'observations)
o d'agir sur son environnement a I'aide d'actions
o $-->$ la politique décide des choix d'actions en fonction des observations
¢ Un environnement :
o |l s'agit d'un simulateur du monde extérieur a I'agent. Il réagit aux actions de I'agent en
modifiant son état.
o L'environnement transmet a I'agent deux types de signaux :
» |es observations
» |es récompenses (gratification des actions)

Nous allons regarder comment programmer ces deux entités pour pouvoir réaliser des simulations
simples.

Structure du code

Dans un projet VSCode, vous commencerez par développer deux classes : la classe Agent et la
classe Environnement.

Classe Environnement

On considere ici que les simulations se déroulent sur un nombre limité de pas de temps (ici 10).

Voici le constructeur :

Environment:
__init (self
self.state
self.steps left

Dans le cas général, I'environnement initialise également son état. Dans ce cas simple, I'état est un
simple compteur qui limite le nombre de pas de temps.

L'état de I'environnement est lu a 'aide de la méthode get observation(). Il s'agit habituellement
d'une fonction de I'état courant (la mesure). On suppose ici que la méthode retourne directement
I'état courant (environnement totalement observable):

get observation(self

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2025/11/24 15:58 public:rl_tpl https://wiki.centrale-med.fr/informatique/public:rl_tpl?rev=1763996299

self.state

La méthode get actions() permet a I'agent de connaitre la liste des actions qu'il peut exécuter.
Normalement, le jeu d'actions peut changer au cours du temps, certaines actions devenant
impossibles dans certains état. Ici seules deux actions sont possibles, encodées par les entiers 0' et 1.

get actions(self

La méthode is done() signale la fin de I'épisode (atteinte lorsque le compteur vaut 0).

is done(self
self.steps left

Enfin, la méthode action() fait évoluer I'état de I'environnement en fonction des actions de I'agent.
Dans le cas général, la méthode modifie I'état en fonction de I'action passée en parametre, et
retourne le signal de récompense. De plus, le nombre de pas est mis a jour afin que la simulation
s'arréte lorsque la limite est atteinte.

Dans cet exemple simple,

\,) e |'action n'est pas prise en compte et I'état n'évolue pas.
e la récompense est tirée au hasard.

action(self, action
self.is done
Exception("Game is over"
self.steps left -
random. random

La classe Agent

La classe Agent est plus simple et ne contient que deux méthodes :

e le constructeur
* la méthode de mise a jour qui effectue une itération de I'environnement

Voici le constructeur. Il contient un compteur qui conserve le nombre total e récompenses
accumulées.

Agent:
__init (self
self.total reward

La méthode de mise a jour prend comme argument une instance d I'environnement et effectue les
opérations suivantes :

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/09 20:51

2026/01/09 20:51 3/7 Apprentissage par renforcement : premiers pas

observer I'environnement

lire le répertoire d'actions possibles

choisir une action et la transmettre a I'environnement
lire la récompense et mettre a jour le compteur

step(self, env

current obs = env.get observation

actions = env.get actions

reward = env.action(random.choice(actions
self.total reward += reward

\y ‘) Ici bien sUr, I'agent ignore I'observation et se contente de choisir une action au hasard.

Programme principal

Créez maintenant un programme principal qui crée les deux classes et exécute un épisode :

env Environment
agent Agent

env.is done
agent.step(env

"Total reward got: %.4f" % agent.total reward

Faites tourner cet environnement plusieurs fois et vérifiez que la somme des récompenses obtenues
varie a chaque fois.

Simulation d'un Monde-grille

Les mondes-grilles (Grid worlds) permettent de simuler de petits labyrinthes dans lesquels les actions
de l'agent se limitent souvent a des déplacements dans les quatre directions cardinales (Nord, Sud,
Est et Ouest), un peu comme dans le jeu Pacman. lls ont I'avantage de présenter un nombre limité
d'états et de traiter les problemes d'apprentissage a I'aide de tables de correspondance (Look-up
Tables). Les cases contiennent des récompenses ou des pieges qui doivent étre attrapés ou évités par
I'agent.

Nous considérons ici un labyrinthe extrémement simple a 8 cases :

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2025/11/24 15:58 public:rl_tpl https://wiki.centrale-med.fr/informatique/public:rl_tpl?rev=1763996299

O @

e S 2 e

e |'état est défini comme la position de I'agent sur la grille. Il peut donc prendre 8 valeurs
possibles et I'espace d'état est I'ensemble discret constitué par les 8 numéros de cases:

$$\mathcal{S} =\{1, 2, 3, 4,5, 6, 7, 8\}$%

‘ 'P Sur le dessin ci-dessus, I'agent est dans la case 3 et I'état de I'environnement vaut
N
donc 3.

 Les actions correspondent aux mouvements de |'agent sur la grille. L'espace des actions est
constitué par les quatre directions cardinales :
$$\mathcal{A} =\{N, S, E, W\}$$

Attention cependant, toutes les actions ne sont pas autorisées dans toutes les
positions. Ainsi, a la position 1, seules les actions E et S sont autorisées.

e Les cases 1, 2, 3, 4, et 5 n'apportent aucune récompense. Par contre les cases 6 et 8 apportent
une pénalité de -10 et la case 7 apporte un bonus de +10.

Nous allons modifier pas a pas le squelette d'agent et d'environnement précédent pour pouvoir
simuler les déplacements d'un agent sur un tel monde.

L'Environnement

L'évolution de I'environnement dépend a la fois de I'état courant et de I'action choisie. Ainsi si I'état
courant est 3 et I'action est "E" alors I'état prend la valeur 4 et la récompense est 0.

e 1. Le changement d'état et le calcul de la récompense seront implémentés au sein de la
méthode action().

‘\J) Plutét que d'écrire une suite de tests if ... else, on utilisera une table de

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/09 20:51

https://wiki.centrale-med.fr/informatique/_detail/public:rl_tp1.png?id=public%3Arl_tp1

2026/01/09 20:51 5/7 Apprentissage par renforcement : premiers pas

correspondance sous la forme d'un dictionnaire (a la maniere d'un graphe):

next
"S"o "E"
oW S ER-
oWt g e "E"
Do{twW o EM &
‘P Co{twW o S
N : {"N" :
: {"N" :
npy

ainsi next[1]["S"] vaut 6 (I'agent se retrouve dans la case 6 s'il part de la case 1
dans la direction sud).

La réecompense est la valeur qui doit étre retournée par la méthode action(). Elle
n'est plus aléatoire mais doit étre lue dans un dictionnaire en fonction de la valeur de
I'état:

reward C C 2 C 2 To- C Do

e 2. Pour l'initialisation, on suppose que la position initiale de I'agent est choisie aléatoirement
parmi les 5 premieres positions

__init (self
self.state random. randint
self.steps left

e 3. La méthode get actions() prend en compte la valeur de I'état (self.state) pour
déterminer le jeu d'actions possibles a partir de la table de correspondance next.

L'agent
Pour I'agent, pas de changement! Il continue de choisir ses actions au hasard.
Simulation

Dans le programme principal, effectuer un total de 100 simulations et calculer la moyenne et I'écart-
type de la récompense totale.

(_ Pour bien comprendre le comportement de l'agent, pensez a afficher la valeur de
b I'état, de I'action choisie et de la récompense a chaque pas de temps.

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2025/11/24 15:58 public:rl_tpl https://wiki.centrale-med.fr/informatique/public:rl_tpl?rev=1763996299

Calcul d'une fonction de valeur

Afin de rendre notre agent un peu plus "intelligent", nous allons calculer une "fonction de valeur" qui
estime le caractere "propice" ou "funeste" d'un état a partir de la récompense cumulée moyenne
obtenue a partir de cet état.

Si s_t est I'état a I'instant t : $$V(s_t) = E(\sum_{t'=t} T r_{t'})$$ avec T Il'instant final (fin de
I'épisode)

Il est nécessaire pour cela d'ajouter a I'agent une liste les états parcourus au cours de I'épisode. Cette
liste est appelée la trace.

Ainsi, le constructeur de I'agent devient :

Agent:
__init (self
self.total reward
self.trace

Cette trace doit étre mise a jour a chaque itération pour obtenir en fin d'épisode la liste de tous les
états parcourus.

Pour calculer (de fagon simplifiée) la fonction de valeur, nous utiliserons I'algorithme suivant :

v=4{1:0,2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0}
nb visites = {1 :0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0O}
total reward sum = {1 :0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: O}

pour i de 1 a N:
exécuter un épisode
pour tout s dans agent.trace
nb visites[s] +=1
total reward sum[s] += agent.total reward
pour tout s dans V:
V[s] = total reward sum[s] / nb visites[s]

Pour calculer la fonction de valeur, on utilisera N = 100
Politique guidée par la valeur

Pour améliorer sa récompense moyenne, I'agent va maintenant prendre en compte la valeur de ['état
futur pour choisir I'action, autrement dit, si s_t est I'état courant : $$ a_t = \underset{a \in
\mathcal{A}}{\text{argmax }} V(\text{next}(s_t, a))$$

« Ecrire une méthode step valeur() dans laquelle I'action est choisie selon la fonction de
valeur (et non plus aléatoirement)

step valeur(self, env, V):

e Lancer des simulations avec cette nouvelle méthode de mise a jour et calculer la récompense

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/09 20:51

2026/01/09 20:51 717 Apprentissage par renforcement : premiers pas

moyenne obtenue sur 100 épisodes et comparer au résultat précédent. Conclusion?
Améliorations

Le calcul exact de la fonction de valeur nécessite de mémoriser I'historique complet des
récompenses. Au lieu de conserver la somme des récompenses, on conserve la liste des récompenses
obtenues.

Agent:
__init (self
self.rewards
self.trace

et la mise a jour se fait en ajoutant les récompenses en fin de liste :
step(self, env
self.rewards + reward

En fin de simulation, la valeur cumulée est calculée séparément pour chaque état rencontré:

 pour chaque état s_t de la trace :
o calculer la somme des récompenses présente et futures
o ajouter la valeur dans total rewards sum
o incrémenter le nombre de visites

Calculer a nouveau la fonction de valeur et comparer la politique obtenue a la politiqgue précédente.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:rl_tp1?rev=1763996299

Last update: 2025/11/24 15:58

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:rl_tp1?rev=1763996299

	[Apprentissage par renforcement : premiers pas]
	Apprentissage par renforcement : premiers pas
	Structure du code
	Classe Environnement
	La classe Agent
	Programme principal

	Simulation d'un Monde-grille
	L'Environnement
	L'agent
	Simulation

	Calcul d'une fonction de valeur
	Politique guidée par la valeur
	Améliorations

