2026/02/04 09:17 1/9 Utilisation de la librairie OpenAl Gym

Utilisation de la librairie OpenAl Gym

Comme nous l'avons vu au TP précédent, I'apprentissage par renforcement repose sur l'interaction
entre un agent et un environnement:

¢ L'environnement correspond a la fois a I'environnement physique et aux dispositifs matériels.
Dans le cadre de |'apprentissage par renforcement, on utilise souvent un environnement simulé
(qui reproduit le comportement de I'environnement physique)

e L'agent correspond a un opérateur logiciel capable de percevoir les états de I'environnement
par ses capteurs et d'agir sur I'environnement grace a ses actionneurs.

On considere de plus que le temps s'écoule de facon discrete et que I'état de I'environnement au
temps t peut étre décrit a I'aide d'un vecteur d'état $\boldsymbol{s} t$.

Dans le cas parfaitement observable, I'état de I'environnement est égal au vecteur d'observation.
La librairie Gym a été développée par OpenAl (voir http://www.openai.com). Elle propose une riche
collection d'environnements pour les expériences d'AR a I'aide d'une interface unifiée.

Classe Space

La classe Space définit un domaine de valeurs (discretes ou continues) que peuvent prendre les
actions ou les observations.

Space
sample()
I,/’ contains() [*_
e i ™~
S ™
yd ™~
e _ ~
Box Discrete Tuple
n
1w spaces
high
shape

Un espace peut étre de type discret, continu, ou encore étre défini comme une combinaison
d'espaces discrets ou continus. Tous les espaces implémentent les méthodes :

sample() : retourne une valeur tirée aléatoirement dans le domaine de valeurs
contains(x) :indique par 'True' ou 'False' si x appartient au domaine de valeurs.

Un espace de type Discrete est décrit par le nombre n de valeurs possibles qu'il peut
prendre;
Un espace de type Box est un espace vectoriel borné :

o |'attribut shape donne la dimension

o |'attribut Low donne la borne inférieur sur les différents axes

o |'attribut high donne la borne supérieure sur les différents axes.

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=10f257&media=http%3A%2F%2Fwww.openai.com
https://wiki.centrale-med.fr/informatique/_detail/public:rl-tp2-1.png?id=public%3Arl_tp2

Last update: 2019/01/07 16:07 public:rl_tp2 https://wiki.centrale-med.fr/informatique/public:rl_tp2

Classe Env

La classe centrale est la classe Env. elle dispose de plusieurs méthodes et attributs qui apportent les
informations nécessaires a la mise en ceuvre de |'apprentissage.

La classe Env posséde deux attributs de type Space:

e action space : le domaine des valeurs d'actions autorisées dans cet environnement
e observation_ space : le domaine des valeurs d'observations possibles sur cet environnement

Elle propose les méthodes:

 la méthode step() permettant d'exécuter des actions, et qui retourne:
o |'observation courante
o la récompense
o une indication pour savoir si I'épisode est fini
* la méthode reset () qui ramene I'environnement a son état initial et fournit la premiere
observation.
 la méthode render () qui permet de visualiser I'état de I'environnement a I'aide d'une
interface graphique.

remarque : la méthode step() est la pieéce centrale de I'environnement, correspondant a I'itération
de I'état de I'environnement entre deux actions produites par I'agent. Ainsi, pour utiliser
I'environnement, il suffit d'écrire une boucle qui alterne les appels a la méthode step() de
I'environnent et le choix de I'action par I'agent. Bien slr, si le comportement de I'environnement est
entierement géré par Gym, la définition du comportement de I'agent est a la charge du programmeur.

Le pendule inversé

Dans ce TP, nous nous intéressons au probléme du pendule inversé (voir
https://gym.openai.com/envs/CartPole-vO0).

Une barre rigide est attachée par une charniere a un chariot, qui bouge le long d'un rail sans friction.
Le systeme est contrdlé en appliquant une force de +1 ou -1 au chariot.

Le pendule démarre en position verticale instable, et le but est de le maintenir ainsi le plus longtemps
possible, en appliquant des forces de +1 ou -1 alternativement.

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=abe3f9&media=https%3A%2F%2Fgym.openai.com%2Fenvs%2FCartPole-v0

2026/02/04 09:17 3/9 Utilisation de la librairie OpenAl Gym

Une récompense de +1 est donnée tant que le pendule est maintenu en position verticale.
L'épisode s'arréte des que:

* le pendule est a plus de 15 degrés de la verticale
e |e chariot est a plus de 2.4 unités du centre

Le vecteur d'observation de cet environnement est constitué de quatre nombres réels donnant la
position du chariot, sa vitesse, la coordonnée angulaire du pendule et sa vitesse angulaire.

NB : si on connait les caractéristiques physiques du chariot, il est possible de trouver
(une loi de contréle qui maintient le pendule en position verticale. Le probleme
3 d'apprentissage consiste a apprendre a maintenir le pendule en position verticale sans
connaitre la signification des grandeurs mesurées.

Premieres simulations

Pour installer gym dans Pycharm, il faut utiliser un environnement virtuel (qui donne le
droit d'installer les librairies non présentes dans I'environnement par défaut).

(e Pour configurer un environnement, suivre ce lien.
3 « une fois I'environnement sélectionné, cliquer sur le petit '+' vert sélectionner la
librairie gym dans la liste.
e |'installation peut prendre un peu de temps...

Chaque environnement proposé par Gym possede un nom unique.

Pour voir la liste des environnements proposés, suivre https://gym.openai.com/envs. Le pendule
inversé appartient a la catégorie des problemes de controle classiques. Il fait partie des problemes
servant a étalonner algorithmes d'apprentissage par renforcement.

L'environnement du pendule inversé s'appelle 'CartPole-v1'

Pour créer I'environnement :

gym
env = gym.make('CartPole-vl'

L'objet env est notre simulateur d'environnement. La commande :
obs = env.reset

initialise I'environnement et retourne la premiéere observation, qui est comme nous I'avons vu
constituée de quatre nombres réels.

L'état de I'environnement peut étre visualisé grace a la commande

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=1d557d&media=https%3A%2F%2Fwww.jetbrains.com%2Fhelp%2Fpycharm%2Fcreating-virtual-environment.html
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=70f613&media=https%3A%2F%2Fgym.openai.com%2Fenvs

Last update: 2019/01/07 16:07 public:rl_tp2 https://wiki.centrale-med.fr/informatique/public:rl_tp2

env.render
c = input('Terminer?’

remarque : |'ajout de I'invitation 'Terminer' permet de maintenir la fenétre active. La fenétre disparait
lorsque la simulation se termine.

Il est possible de modifier la position du pendule a I'aide d'une action. Pour choisir une action au
hasard:

action
NB : L'espace des actions est limité a deux valeurs possibles : 0 ou 1
\J) e |'action 0 pousse le chariot vers la gauche
e |'action 1 pousse le chariot vers la droite

pour appliquer I'action :

observation, reward, done, = env.step(action
env.render
C = input('Terminer?'

On peut remarquer sur la fenétre graphique que le pendule a bougé de maniere infinitésimale suite a
I'application de l'action.

NB : la fonction step retourne plusieurs valeurs :

(¢ une observation
b e un reward (recompense)

e un indicateur done qui vaut True lorsque I'épisode est terminé et False sinon

Pour le faire bouger de maniere plus franche, il faut appliquer plusieurs fois I'action. Essayons de
I'appliquer 100 fois :

obs = env.reset

i range

env.render

action

obs, reward, done, = env.step(action
Cc = input("Terminer?"

Le chariot disparait tres vite a gauche de I'écran (l'inverse se produit si on applique uniquement
I'action 1)

Pour contréler le pendule, il faut donc alterner les actions 0 et 1. Essayons :

obs env.reset

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

2026/02/04 09:17 5/9 Utilisation de la librairie OpenAl Gym

i range
env.render
1%
action
action
obs, reward, done, = env.step(action

c = input("Terminer?"
C'est un peu mieux, mais la barre ne reste pas en position verticale (le systeme est instable)

Essayons de prendre en compte I'état de I'environnement : un coup a droite si la position angulaire
est négative et un coup a gauche si la position angulaire positive:

obs env.reset

i range
env.render
obs
action
action
obs, reward, done, = env.step(action

C = input("Terminer?"
C'est encore un peu mieux mais le pendule finit quand méme par se déstabiliser.

Si nous prenons en compte I'indicateur de fin d'épisode done, nous voyons que la simulation s'arréte
en fait assez rapidement:

obs env.reset
total steps
True:

env.render
obs

action

action
obs, reward, done, = env.step(action
total steps +

done:

"Episode terminé apres %d itérations" % total steps
c = input("Terminer?"

Il est également possible de controler le pendule de maniere aléatoire a I'aide le la méthode
sample() de I'espace d'actions, mais le résultat n'est guere probant:

obs env.reset
total steps
True:

env.render

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2019/01/07 16:07 public:rl_tp2 https://wiki.centrale-med.fr/informatique/public:rl_tp2

action = env.action space.sample
obs, reward, done, = env.step(action
total steps +

done:

"Episode terminé apres %d itérations" % total steps
C = input("Terminer?"

A faire

» Modifiez le code pour que ce soit I'utilisateur qui choisisse a chagque pas de temps I'action a
produire. Quel score obtenez vous?

» Définissez une loi de contrdle qui prenne en compte a la fois la position angulaire obs[2]et la
vitesse angulaire obs[3].

Discrétiser I'environnement

Les algorithmes d'apprentissage que nous avons vus jusqu'a présent reposent sur de états discrets.
On parle d'approche tabulaire.

Définir un critere simple : obs[2] < 0 pour choisir I'action revient a discrétiser I'environnement, en
deux états :

e |'état 0: obs[2] < 0O
e I'état1:0bs[2] >= 0

On peut généraliser ce principe et définir 16 états différents a partir des 4 observables :

e état 0: 0bs[0] < 0,0bs[1] < 0, obs[2] < 0,0bs[3] < 0
e état1:0bs[0] >= 0,0bs[1] < 0,0bs[2] < 0,0bs[3] < 0

e état 15 : 0obs[0] >= 0, obs[1] >= 0, 0bs[2] >= 0, 0bs[3] >= 0

A faire : écrire une fonction qui calcule un état discret a partir des valeurs d'une observation.

Calcul d'une fonction de valeur sur les transitions

L'apprentissage par renforcement consiste ici a procéder par essai/erreur jusqu'a obtenir des durées
de simulation les plus longues possibles. Chaque pas de temps apporte une récompense de 1. Les
expériences plus longues apportent donc une récompense cumulée plus importante

Rappel : Si s_t est I'état a I'instant t : $$V(s_t) = E(\sum_{t'=t} T r_{t'})$$ est la fonction de
valeur de I'état (avec T l'instant final (fin de I'épisode)). Ainsi les épisodes les plus longs apportent
une récompense cumulée plus importante.

La "fonction de valeur" d'un état estime la récompense cumulée moyenne obtenue a partir de cet
état a partir d'un grand nombre d'observations.

Contrairement au TD1, nous ne possédons pas de modele de transitions d'état. La fonction de valeur
sera ici estimée directement sur les transitions d'état (s_t, a_t) pour permettre de définir une

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

2026/02/04 09:17 7/9 Utilisation de la librairie OpenAl Gym

politiqgue qui maximise la valeur de la transition. On note : $$Q(s t, a_t) = E(\sum_{t'=t}"~Tr {t'})$$
la fonction de valeur sur les transitions d'état.

NB : I'état s_t est un état discret.

Il est nécessaire pour cela d'ajouter a I'agent une liste les états/actions visités au cours de I'épisode.
Cette liste est appelée la trace.

Nous reprenons ici le modele d'agent vu dans le TD1:

Agent:
__init (self
self.total reward
self.trace

(pas besoin de méthode step () ici)

Cette trace doit étre mise a jour a chaque itération pour obtenir en fin d'épisode la liste de tous les
couples(état, action) parcourus.

On suppose ici que I'agent choisit ses actions au hasard:
action env.action space.sample

Pour calculer (de facon simplifiée) la fonction de valeur, nous utiliserons I'algorithme suivant :

Q={}

nb visites = {}

total rewards sum = {}

pour tout couple (s,a) possible:
Ql(s,a)] =0

nb visites[(s,a)] = 0
total rewards sum[(s,a)] = 0O
pour i de 1 a N:
exécuter un épisode
pour tout (s,a) dans agent.trace
nb visites[(s,a)] +=1
total rewards sum[(s,a)] += agent.total reward
pour tout (s,a) dans Q:
si nb visites[(s,a)] > 0O:
Q[(s,a)] = total rewards sum[(s,a)] / nb visites[(s,a)]l

Pour calculer la fonction de valeur, on utilisera N = 1000
Modifier I'init :

Agent:
__init (self
self.total reward
self.trace
self.Q

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2019/01/07 16:07 public:rl_tp2 https://wiki.centrale-med.fr/informatique/public:rl_tp2

self.nb visites
self.total rewards sum

L'initialisation doit également inscrire des valeurs nulles dans les dictionnaires:

pour tout couple (s,a) possible:
@ 0l(s,a)] = 0
nb visites[(s,a)] = 0

total rewards sum[(s,a)] = 0

Définir les méthodes suivantes :
e une méthode qui exécute un épisode complet en utilisant une politique aléatoire:

run_episode random(self, env

Attention, la trace doit contenir des couples (état_discret, action), avec I'état discret
calculé a l'aide de la fonction précédente.

e une méthode qui met a jour les dictionnaires nb _visites et total rewards sumen fin
d'épisode (lorsque la trace et total reward sont connus):

update dicos(self

Attention penser a remettre zéro la trace et total rewards une fois
update dicos exécuté!

e une méthode qui estime la valeur de Q apres un grand nombre d'épisodes :

update Q(self

Implémentez ensuite I'algorithme indiqué a I'aide de ces trois méthodes.
Politique guidée par la valeur

Pour améliorer sa récompense moyenne, I'agent va maintenant prendre en compte la valeur de la
transition d'état pour choisir I'action, autrement dit, si s_t est I'état courant : $$ a_t = \underset{a
\in \mathcal{A}}{\text{argmax }} Q(s_t, a)$$

e Ecrire une méthode choix_action() dans laquelle I'action est choisie selon la fonction de

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

2026/02/04 09:17 9/9 Utilisation de la librairie OpenAl Gym

valeur (et non plus aléatoirement)

choix action(self, s

¢ Lancer des simulations avec cette nouvelle méthode :
action = agent.choix action(s

« et calculer la récompense moyenne obtenue sur 100 épisodes et comparer au résultat
précédent. Conclusion?

Améliorations

Le calcul exact de la fonction de valeur nécessite de mémoriser I'historique complet des
récompenses. Au lieu de conserver la somme des récompenses, on conserve la liste des récompenses
obtenues.

Agent:
__init (self
self.rewards
self.trace
self.Q
self.nb visites
self.total rewards sum

et la mise a jour se fait en ajoutant les récompenses en fin de liste :
self.rewards += [reward]

a chaque pas de temps (aprés chaque appel a env.step()).
En fin de simulation, la valeur cumulée est calculée séparément pour chaque (s,a) rencontré:

e pour chaque couple $s t, a_t$ de la trace :
o calculer la somme des récompenses présente et futures
o ajouter la valeur dans total rewards sum
o incrémenter le nombre de visites

Calculer a nouveau la fonction de valeur et comparer la politique obtenue a la politique précédente.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:rl_tp2

Last update: 2019/01/07 16:07

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:rl_tp2

	[Utilisation de la librairie OpenAI Gym]
	Utilisation de la librairie OpenAI Gym
	Classe Space
	Classe Env
	Le pendule inversé
	Premières simulations
	Discrétiser l'environnement
	Calcul d'une fonction de valeur sur les transitions
	Politique guidée par la valeur
	Améliorations

