
2026/02/04 09:17 1/6 TP3 : Q-learning tabulaire

WiKi informatique - https://wiki.centrale-med.fr/informatique/

TP3 : Q-learning tabulaire

Dans ce TP nous allons mettre en œuvre un algorithme d'apprentissage basé sur l'équation de point
fixe de Bellman.

Rappel:

On note : $$Q(s_t, a_t) = E(\sum_{t'=t}^{T_\text{max}} \gamma^{t'-t} r_{t'})$$ la fonction de
valeur sur les transitions d'état (avec $\gamma \in [0,1])$.

La fonction de valeur de la politique optimale obéit à l'équation de récurrence : $$Q(s_t, a_t) = r_t +
\gamma \sum_{s'} p(s'|s, a) \max_{a'} Q(s', a')$$

Dans le cadre de l'apprentissage par renforcement, les probabilités de transition $p(s'|s, a)$ sont
inconnues. On utilise donc une approximation. le principe général du Q-learning est de calculer la
valeur optimale à l'aide d'une politique non optimale. Soit $\tilde{\pi}$ cette politique non optimale et
s_{t+1} l'état observé après avoir choisi l'action a_t. La valeur de Q optimale est approchée
par : $$\tilde{Q}(s_t, a_t) = r_t + \gamma \max_{a'} \tilde{Q}(s_{t+1}, a')$$

Ainsi la valeur de la transition (s_t, a_t) est mise à jour en fonction de valeur calculées
précédemment. Les états et les actions étant supposés discrets, les valeurs sont stockées dans une
table.

Si les mêmes transitions sont visitées plusieurs fois, il est possible de comparer la valeur
précédemment stockée et la nouvelle valeur. La différence entre les deux est appelée erreur de
prédiction: $$e_t = r_t + \gamma \max_{a'} \tilde{Q}(s_{t+1}, a') - \tilde{Q}(s_t, a_t) $$

La mise à jour du Q-learning repose sur un paramètre d'apprentissage $\alpha \in]0, 1]$ qui fixe la
"force" de la mise à jour. $$\tilde{Q}(s_t, a_t) \leftarrow \tilde{Q}(s_t, a_t) + \alpha e_t$$

Algorithme

Dans le cadre du Q-learning, il n'est pas nécessaire de conserver l'historique des récompenses. La
mise jour de la valeur est effectuée à chaque nouvelle observation:

Q <-- zeros(N_obs, N_act)
s <-- initialiser_environnement()
répéter:
 a <-- choix_selon_politique(s)
 s_prim, r <-- environnement_step(a)
 max_Q_prim <-- max (Q[s_prim,:])
 err <-- r + GAMMA * max_Q_prim - Q[s, a]
 Q[s, a] <-- Q[s, a] + ALPHA * err
 s <-- s_prim

Pour les environnements épisodiques, on utilisera une double boucle :

Q <-- zeros(N_obs, N_act)
répéter:

Last update: 2019/01/16 10:03 public:rl_tp3 https://wiki.centrale-med.fr/informatique/public:rl_tp3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

 s <-- initialiser_environnement()
 répéter :
 a <-- choix_selon_politique(s)
 s_prim, r, fini <-- environnement_step(a)
 max_Q_prim <-- max Q[s_prim,:]
 si fini:
 err <-- r - Q[s, a]
 sinon:
 err <-- r + GAMMA * max_Q_prim - Q[s, a]
 Q[s, a] <-- Q[s, a] + ALPHA * err
 s <-- s_prim
 si fini :
 sortir de la boucle

Classe agent

La classe agent doit être la plus générique possible pour pouvoir être utilisée dans différents
environnements.

On distingue ici deux cas de figure :

environnement continu : lorsque l'environnement est continu, on doit définir une discrétisation
de l'environnement. On prendra ici une discrétisation binaire : le nombre d'états discrets est
alors 2^N où N est le nombre de dimensions.
environnement discret : le nombre d'états discrets est donné.

import numpy as np

class Agent:
 def __init__(self, env, ALPHA = 0.1, GAMMA = 0.9):
 self.env = env
 if type(env.observation_space) is gym.spaces.discrete.Discrete:
 self.N_obs = env.observation_space.n
 else:
 dim = np.prod(env.observation_space.shape)
 self.N_obs = 2**dim
 self.N_act = env.action_space.n
 self.Q = np.zeros((self.N_obs, self.N_act))
 self.ALPHA = ALPHA
 self.GAMMA = GAMMA

ALPHA et GAMMA sont les 'hyperparamètres' de l'algorithme du Q-learning. Ils doivent
être choisis soigneusement pour assurer la bonne convergence de l'algorithme.

Les valeurs par défaut sont ici ALPHA = 0.1 et GAMMA = 0.9

2026/02/04 09:17 3/6 TP3 : Q-learning tabulaire

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Discrétisation

Pour les premiers tests, nous reprenons l'environnement 'CartPole-v0' du TP2 (pendule inversé). Le
pendule inversé étant un environnement à états continus, il faut définir une discrétisation :

def discretise(self, obs):
 if type(self.env.env) is gym.envs.classic_control.cartpole.CartPoleEnv:
 return int(obs[3] >= 0)
 + 2 * int(obs[2] >= 0)
 + 4 * int(obs[1] >= 0)
 + 8 * int(obs[0] >= 0)
 else:
 return obs

Choix des politiques

L'algorithme du Q-learning repose sur l'utilisation d'une politique imparfaite (non-optimale) pour
trouver les valeurs de Q optimales.

La vitesse et la qualité de la convergence dépendra fortement de la politique choisie. Nous
comparerons dans ce TP différentes politiques possibles.

On considérera ici :

la politique gloutonne ("greedy")
une politique aléatoire uniforme
la politique ε-greedy
la politique softmax

Max et argmax

Écrire une méthode max_Q qui retourne la valeur maximale de Q[s,:] (on pourra utiliser la méthode
np.max).

 def max_Q(self, s):
 ...

Écrire une méthode greedy_pol qui retourne l'action qui maximise Q[s,:] (on pourra utiliser la
méthode np.argmax).

 def greedy_pol(self, s):
 ...

Il s'agit ici de la politique "gloutonne" ("greedy") d'où le nom.

Last update: 2019/01/16 10:03 public:rl_tp3 https://wiki.centrale-med.fr/informatique/public:rl_tp3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

Politique aléatoire

Écrire une méthode random_pol qui retourne une action choisie au hasard dans l'espace des actions
possibles. (on pourra utiliser np.random.randint(self.N_act))

def random_pol(self, s):
 ...

Politique epsilon-greedy

Écrire une méthode eps_greedy_pol qui retourne une action choisie au hasard selon la distribution
epsilon greedy :

si $a = \underset{a'}{\text{ argmax }} Q(s,a')$:
$\pi(a|s) = 1 - \varepsilon + \frac{\varepsilon}{N_a}$

sinon:
$\pi(a|s) = \frac{\varepsilon}{N_a}$

Ecrire la méthode eps_greedy_pol qui choisit une action au hasard selon la distribution définie plus
haut.

def eps_greedy_pol(self, s, EPSILON = 0.1):
 ...

Si act_probs est un vecteur de probabilités, le tirage s'effectue avec :

act = np.random.choice(len(act_probs), p=act_probs)

Politique softmax

La distribution du softmax est calculée selon l'équation de Gibbs: $$\pi(a|s) =
\frac{\exp(Q(s,a))}{\sum_{a'}\exp(Q(s,a'))}$$

Pour éviter les problèmes numériques, On utilisera l'algorithme suivant :

somme = 0
pour a de 0 à N_act:
 act_probs[a] = exp(Q[s,a] - max_Q(s))
 somme <-- somme + act_probs[a]
act_probs <-- act_probs / somme

Ecrire la méthode softmax_pol qui choisit une action au hasard selon la distribution du softmax.

def softmax_pol(self, s):
 ...

2026/02/04 09:17 5/6 TP3 : Q-learning tabulaire

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Outils d'analyse

Voilà, nous disposons à présent de tous les éléments nécessaires pour écrire l'algorithme du Q-
learning!

Le but est de trouver la politique d'exploration et le jeu de paramètres permettant de
converger le plus rapidement possible vers la politique optimale. On devra estimer
l'effet des différents paramètres :

ALPHA : plus il est élevé, plus la mise à jour est rapide. Néanmoins, pour des
valeurs trop élevées, l'algorithme risque de devenir instable et ne pas
converger.
GAMMA : il représente l'horizon du nombre d'états futurs pris en compte pour le
calcul de la valeur. Avec GAMMA = 0.9, le nombre d'états futurs pris en compte
est de l'ordre de 10.
EPSILON : il s'agit du paramètre d'"exploration" de la politique epsilon-greedy.
Plus EPSILON est grand, plus la politique se rapproche d'une politique aléatoire,
ce qui permet de tester de nombreuses séquences d'actions. Plus EPSILON est
petit, plus la politique ressemblera à la politique gloutonne qui sert de référence
à l'algorithme.

Pour comparer différentes politiques et différents paramètres, il est utile de disposer d'un outil de
visualisation. L'apprentissage par récurrence est en effet un processus qui converge lentement du fait
de la nature approximative de l'algorithme de mise à jour.

On utilisera ici l'outil TensorboardX qui permet de visualiser certaines variables au cours d'un
processus d'apprentissage.

On regardera ici :

le nombre total d'itérations à chaque fin d'épisode
la valeur de l'état 0

A chaque exécution de l'algorithme, les variables sont sauvegardées dans un dossier spécifique (qui
doit être précisé):

Exemple de programme principal:

import gym
from agent import Agent
from tensorboardX import SummaryWriter

ENV_NAME = 'CartPole-v1'
env = gym.make(ENV_NAME)

agent = Agent(env, ALPHA = 0.01, GAMMA = 0.9, CHOICE = 'eps-greedy')
writer = SummaryWriter(log_dir='runs/cartpole/epsgreedy-g_9-a_01')

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=354c88&media=https%3A%2F%2Ftensorboardx.readthedocs.io%2Fen%2Flatest%2Ftutorial.html

Last update: 2019/01/16 10:03 public:rl_tp3 https://wiki.centrale-med.fr/informatique/public:rl_tp3

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

N = 1000

for num_episode in range(N):
 agent.run_episode_Q_learning(env, render = False)
 print(num_episode)
 if num_episode % 10 == 0:
 agent.run_episode_glouton(env, render = True)
 print("Test %d done in %d steps" % (num_episode,
env._elapsed_steps))
 writer.add_scalar("#steps", env._elapsed_steps, num_episode)
 writer.add_scalar("V(0)", agent.max_Q(0), num_episode)

Ecrivez la méthode run_episode_Q_learning qui exécute un épisode (selon
l'algorithme épisodique donné plus haut).
Ecrivez la méthode run_episode_glouton qui exécute un épisode avec la
politique gloutonne (sans modifier Q)
l'argument render sert à activer la visualisation graphique dans ces 2 fonctions
Pensez à ajouter un attribut CHOICE dans le constructeur qui détermine le choix
de la politique

pour la visualisation

Pensez à définir un dossier différent pour chaque politique et chaque jeu de
paramètres testés
Pour visualiser les courbes d'apprentissage, ouvrez un terminal à la racine de
votre projet et lancez la commande :

 $ tensorboard --logdir runs

Ouvrez un navigateur. Le tableau de bord est visible à l'adresse :
http://localhost:6006.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:rl_tp3

Last update: 2019/01/16 10:03

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:rl_tp3

	[TP3 : Q-learning tabulaire]
	TP3 : Q-learning tabulaire
	Algorithme
	Classe agent
	Discrétisation
	Choix des politiques
	Max et argmax
	Politique aléatoire
	Politique epsilon-greedy
	Politique softmax

	Outils d'analyse

