2026/02/04 09:17 1/6 TP3 : Q-learning tabulaire

TP3 : Q-learning tabulaire

Dans ce TP nous allons mettre en ceuvre un algorithme d'apprentissage basé sur I'équation de point
fixe de Bellman.

Rappel:

On note : $$Q(s_t, a_t) = E(\sum_{t'=t}~{T \text{max}} \gamma~{t'-t} r {t'})$$ la fonction de
valeur sur les transitions d'état (avec $\gamma \in [0,1])$.

La fonction de valeur de la politique optimale obéit a I'équation de récurrence : $$Q(s t,a t) =r t +
\gamma \sum_{s'} p(s'|s, a) \max_{a'} Q(s', a')$$

Dans le cadre de |'apprentissage par renforcement, les probabilités de transition $p(s'|s, a)$ sont
inconnues. On utilise donc une approximation. le principe général du Q-learning est de calculer la
valeur optimale a l'aide d'une politiqgue non optimale. Soit $\tilde{\pi}$ cette politique non optimale et
s_{t+1} I'état observé apres avoir choisi I'action a_t. La valeur de Q optimale est approchée
par : $$\tilde{Q}(s_t, a_t) = r_t + \gamma \max_{a'} \tilde{Q}(s_{t+1}, a")$$

Ainsi la valeur de la transition (s_t, a_t) est mise a jour en fonction de valeur calculées
précédemment. Les états et les actions étant supposés discrets, les valeurs sont stockées dans une
table.

Si les mémes transitions sont visitées plusieurs fois, il est possible de comparer la valeur
précédemment stockée et la nouvelle valeur. La différence entre les deux est appelée erreur de
prédiction: $$e_t = r_ t + \gamma \max_{a'} \tilde{Q}(s_{t+1}, a') - \tilde{Q}(s_t, a_t) $$

La mise a jour du Q-learning repose sur un parametre d'apprentissage $\alpha \in 10, 11$ qui fixe la
"force" de la mise a jour. $$\tilde{Q}(s_t, a_t) \leftarrow \tilde{Q}(s_t, a_t) + \alpha e t$$

Algorithme

Dans le cadre du Q-learning, il n'est pas nécessaire de conserver I'historique des récompenses. La
mise jour de la valeur est effectuée a chaque nouvelle observation:

Q <-- zeros(N obs, N act)

S <-- initialiser environnement()

répéter:
a <-- choix selon politique(s)
S _prim, r <-- environnement step(a)
max Q prim <-- max (Q[s prim,:])
err <-- r + GAMMA * max Q prim - Q[s, al
Q[s, al] <-- Q[s, al] + ALPHA * err
S <-- s _prim

Pour les environnements épisodiques, on utilisera une double boucle :

Q <-- zeros(N obs, N act)
répéter:

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2019/01/16 10:03 public:rl_tp3 https://wiki.centrale-med.fr/informatique/public:rl_tp3

S <-- initialiser environnement ()
répéter :
a <-- choix selon politique(s)
s prim, r, fini <-- environnement step(a)
max Q prim <-- max Q[s prim,:]
si fini:
err <-- r - Q[s, al
sinon:
err <-- r + GAMMA * max Q prim - Q[s, a]
Q[s, a] <-- Q[s, a] + ALPHA * err
S <-- s prim
si fini
sortir de la boucle

Classe agent

La classe agent doit étre la plus générique possible pour pouvoir étre utilisée dans différents
environnements.

On distingue ici deux cas de figure :

e environnement continu : lorsque I'environnement est continu, on doit définir une discrétisation
de I'environnement. On prendra ici une discrétisation binaire : le nombre d'états discrets est
alors $27°N$ ou N est le nombre de dimensions.

 environnement discret : le nombre d'états discrets est donné.

numpy np
Agent:
~_init (self, env, ALPHA GAMMA
self.env = env
type(env.observation space gym.spaces.discrete.Discrete:

self.N obs = env.observation space.n

dim = np.prod(env.observation space.shape
self.N obs **dim
self.N act = env.action space.n
self.Q = np.zeros((self.N obs, self.N act
self.ALPHA = ALPHA
self.GAMMA = GAMMA

ALPHA et GAMMA sont les 'hyperparametres' de I'algorithme du Q-learning. lls doivent
"‘) étre choisis soigneusement pour assurer la bonne convergence de I'algorithme.
“

Les valeurs par défaut sont ici ALPHA = 0.1 et GAMMA = 0.9

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

2026/02/04 09:17 3/6 TP3 : Q-learning tabulaire

Discrétisation

Pour les premiers tests, nous reprenons |'environnement 'CartPole-v0' du TP2 (pendule inversé). Le
pendule inversé étant un environnement a états continus, il faut définir une discrétisation :

discretise(self, obs):
type(self.env.env gym.envs.classic control.cartpole.CartPoleEnv:
int(obs
+ 2 * int(obs
+ 4 * int(obs
+ 8 * int(obs

obs

Choix des politiques
L'algorithme du Q-learning repose sur I'utilisation d'une politique imparfaite (non-optimale) pour
trouver les valeurs de Q optimales.

La vitesse et la qualité de la convergence dépendra fortement de la politique choisie. Nous
comparerons dans ce TP différentes politiques possibles.

On considéreraici :
e la politique gloutonne ("greedy")
* une politique aléatoire uniforme

e |a politique ε-greedy
e |a politique softmax

Max et argmax

Ecrire une méthode max_Q qui retourne la valeur maximale de Q[s,:] (on pourra utiliser la méthode
np.max).

def max Q(self, s):
Ecrire une méthode greedy pol qui retourne I'action qui maximise Q[s,:] (on pourra utiliser la
méthode np.argmax).

def greedy pol(self, s):

‘Y ‘) Il s'agit ici de la politique "gloutonne" ("greedy") d'ou le nom.

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2019/01/16 10:03 public:rl_tp3 https://wiki.centrale-med.fr/informatique/public:rl_tp3

Politique aléatoire

Ecrire une méthode random pol qui retourne une action choisie au hasard dans I'espace des actions
possibles. (on pourra utiliser np. random. randint(self.N act))

def random pol(self, s):

Politique epsilon-greedy
Ecrire une méthode eps_greedy pol qui retourne une action choisie au hasard selon la distribution
epsilon greedy :
e si $a = \underset{a'} {\text{ argmax }} Q(s,a')$:
o $\pi(als) = 1 - \varepsilon + \frac{\varepsilon}{N a}$
e sinon:

o $\pi(a|s) = \frac{\varepsilon}{N_a}$

Ecrire la méthode eps greedy pol qui choisit une action au hasard selon la distribution définie plus
haut.

def eps greedy pol(self, s, EPSILON = 0.1):

Siact _probs est un vecteur de probabilités, le tirage s'effectue avec :

act = np.random.choice(len(act probs), p=act probs)

Politique softmax
La distribution du softmax est calculée selon I'équation de Gibbs: $$\pi(als) =
\frac{\exp(Q(s,a))}{\sum_{a'H\exp(Q(s,a"))}$$

Pour éviter les problemes numériques, On utilisera I'algorithme suivant :

somme = 0O

pour a de @ a N act:
act probs[a] = exp(Q[s,a] - max Q(s))
somme <-- somme + act probs[a]

act probs <-- act probs / somme

Ecrire la méthode softmax po'l qui choisit une action au hasard selon la distribution du softmax.

def softmax pol(self, s):

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

2026/02/04 09:17 5/6 TP3 : Q-learning tabulaire

Outils d'analyse

Voila, nous disposons a présent de tous les éléments nécessaires pour écrire I'algorithme du Q-
learning!

Le but est de trouver la politique d'exploration et le jeu de paramétres permettant de
converger le plus rapidement possible vers la politique optimale. On devra estimer
I'effet des différents parametres :

e ALPHA : plus il est élevé, plus la mise a jour est rapide. Néanmoins, pour des
valeurs trop élevées, I'algorithme risque de devenir instable et ne pas

) converger.
(e GAMMA : il représente I'horizon du nombre d'états futurs pris en compte pour le
3 calcul de la valeur. Avec GAMMA = 0.9, le nombre d'états futurs pris en compte

est de l'ordre de 10.

e EPSILON : il s'agit du parametre d'"exploration" de la politique epsilon-greedy.
Plus EPSILON est grand, plus la politique se rapproche d'une politique aléatoire,
ce qui permet de tester de nombreuses séquences d'actions. Plus EPSILON est
petit, plus la politigue ressemblera a la politique gloutonne qui sert de référence
a l'algorithme.

Pour comparer différentes politiques et différents parametres, il est utile de disposer d'un outil de
visualisation. L'apprentissage par récurrence est en effet un processus qui converge lentement du fait
de la nature approximative de I'algorithme de mise a jour.

On utilisera ici I'outil TensorboardX qui permet de visualiser certaines variables au cours d'un
processus d'apprentissage.

On regarderaici :

 le nombre total d'itérations a chaque fin d'épisode
e |a valeur de I'état 0

A chaque exécution de I'algorithme, les variables sont sauvegardées dans un dossier spécifique (qui
doit étre précisé):

Exemple de programme principal:

gym
agent Agent
tensorboardX SummaryWriter

ENV_NAME ‘CartPole-vl'
env = gym.make(ENV_NAME

agent = Agent(env, ALPHA GAMMA CHOICE ‘eps-greedy’
writer = SummaryWriter(log dir='runs/cartpole/epsgreedy-g 9-a 01’

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=354c88&media=https%3A%2F%2Ftensorboardx.readthedocs.io%2Fen%2Flatest%2Ftutorial.html

Last update: 2019/01/16 10:03 public:rl_tp3 https://wiki.centrale-med.fr/informatique/public:rl_tp3

num_episode range (N
agent.run episode Q learning(env, render = False
num_episode
num_episode % :
agent.run episode glouton(env, render = True
"Test %d done in %d steps" % (num_episode
env. elapsed steps
writer.add scalar("#steps", env. elapsed steps, num episode
writer.add scalar("V(0)", agent.max Q num_episode

Ecrivez la méthode run _episode Q learning qui exécute un épisode (selon
I'algorithme épisodique donné plus haut).

Ecrivez la méthode run_episode glouton qui exécute un épisode avec la
politique gloutonne (sans modifier Q)

I'argument render sert a activer la visualisation graphique dans ces 2 fonctions
Pensez a ajouter un attribut CHOICE dans le constructeur qui détermine le choix
de la politique

pour la visualisation

e Pensez a définir un dossier différent pour chaque politique et chaque jeu de
parametres testés
e Pour visualiser les courbes d'apprentissage, ouvrez un terminal a la racine de

votre projet et lancez la commande :

$ tensorboard --logdir runs

e Quvrez un navigateur. Le tableau de bord est visible a I'adresse :
http://localhost:6006.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:rl_tp3

Last update: 2019/01/16 10:03

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:17

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:rl_tp3

	[TP3 : Q-learning tabulaire]
	TP3 : Q-learning tabulaire
	Algorithme
	Classe agent
	Discrétisation
	Choix des politiques
	Max et argmax
	Politique aléatoire
	Politique epsilon-greedy
	Politique softmax

	Outils d'analyse

