2026/02/04 12:29 1/6 TP4 : Q-learning sur les espaces d'états continus

TP4 : Q-learning sur les espaces d'états continus

L'équation de point fixe de Bellman est ici mise en oeuvre au sein d'un environnement continu.

Les espaces d'état discrets offrent un cadre propice au développement d'algorithmes d'approximation
de fonctions de valeur grace a un stockage tabulaire des valeurs et un échantillonnage sur un
ensemble discret d'actions.

Néanmoins, de nombreux problemes de contrdle ont lieu dans des environnements continus. Nous
considérons ici le cas ou les observations s appartiennent a un espace d'états continu
\mathcal{S}.

Pour approcher la valeur de transition $Q(s,a)$, il est impossible d'énumérer tous les états possibles
dans une table. On utilisera donc un approximateur de fonction paramétrique de type réseau de
neurones pour apprendre la fonction de valeur.

Environnement
L'environnement que nous considérons dans ce TP se nomme 'MountainCar' (voir illustration)
original.mp4

A car is on a one-dimensional track, positioned between two "mountains". The goal is to drive up the
mountain on the right; however, the car's engine is not strong enough to scale the mountain in a
single pass. Therefore, the only way to succeed is to drive back and forth to build up momentum.

ENV_NAME ‘MountainCar-voO'
env = gym.make(ENV_NAME

Dans cet environnement, I'observation est simplement constituée de deux valeurs continues : la
position et la vitesse du véhicule.

Il existe trois actions possibles : pousser a gauche, ne rien faire ou pousser a droite.

La difficulté de I'environnement MountainCar vient du fait que la force appliquée est
limitée et que le véhicule doit apprendre a prendre son élan sur le c6té opposé pour
gravir la montagne (un peu comme une balangoire).

La récompense est ici de -1 a chaque pas de temps (le signe de la récompense est
inversé par rapport au pendule du TP3). Ici, on cherche a obtenir les épisodes les plus
@ courts possibles (et non les épisodes les plus longs).

Le simulateur stoppe la simulation apres 200 pas de temps. Il y a donc deux conditions
d'arrét :

« |e véhicule a atteint I'objectif pour $t < 200%
* |le véhicule n'a pas atteint I'objectif et $t = 200$

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/_media/public:original.mp4?cache=

Last update: 2019/01/22 22:36 public:rl_tp4 https://wiki.centrale-med.fr/informatique/public:rl_tp4

Pour calculer l'erreur de prédiction, doit prendre en compte ce cas de figure, on
modifie le calcul de I'erreur comme suit :

if done and self.env. elapsed steps < 200:
@ err = reward - self.Q[s, al
else:
err = reward + self.GAMMA * self.max Q(s) -

self.Q[s, al

Dans un premier temps, essayez de résoudre cet environnement a I'aide du Q-learning
tabulaire vu au TP3. Cela implique de modifier un peu la méthode de discrétisation
(voir TP3) pour prendre en compte ce nouvel environnement.

Ici la position de départ étant a -0.5, le seuil de la discrétisation de la position est fixé
a-0.5:

discretise(self, obs
type(self.env.env

(typeiself.env.env
3 gym.envs.classic control.mountain car.MountainCarEnv:

int(obs -
+ * int(obs

créez dans le projet du TP3 un nouveau programme principal main_mountain.py.
Initialisez I'environnement MountainCar-v0 et exécutez I'apprentissage sur plusieurs
valeurs ce ALPHA et GAMMA pour essayer d'optimiser le comportement de
['algorithme.

Mise en oeuvre dans un environnement continu

La prise en compte d'états continus nécessite de définir la fonction de valeur Q comme une
fonction paramétrique dont les parametres sont mis a jour par descente de gradient sur I'erreur de
prédiction (voir le cours sur les réseaux de neurones).

Pour conserver I'environnement virtuel mis en place dans le TP précédent, définissez
une nouvelle classe Agent nn au sein du méme projet.

Nous utiliserons ici la librairie pytorch pour implémenter le réseau de neurones.

torch
torch.nn nn

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 12:29

https://wiki.centrale-med.fr/informatique/public:rl_tp3#discretisation
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=fe80fa&media=https%3A%2F%2Fpageperso.lis-lab.fr%2Fthierry.artieres%2F
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=cb23a6&media=https%3A%2F%2Fpytorch.org

2026/02/04 12:29 3/6 TP4 : Q-learning sur les espaces d'états continus

‘S ‘) Pensez a installer la librairie torch dans I'environnement virtuel de votre projet

Voici la forme que prend la nouvelle classe Agent

Agent nn:
~_init (self, env, GAMMA ALPHA CHOICE
'epsgreedy’

self.env = env

self.N obs np.prod(env.observation space.shape

self.N act = env.action space.n

self.GAMMA = GAMMA

self.ALPHA = ALPHA

self.CHOICE = CHOICE

self.net nn.Sequential
nn.Linear(self.N obs + self.N act, N _HIDDEN
nn.RelU
nn.Linear (N HIDDEN

self.optimizer = torch.optim.Adam(self.net.parameters lr
self.ALPHA

L'agent a maintenant pour attributs supplémentaires

e un réseau de neurones self.net a deux couches, avec une fonction d'activation non-linéaire
ReLu sur la couche intermédiaire, et une sortie linéaire.
¢ un optimiseur permettant de calculer les valeurs de gradient par rétropropagation sur toutes les
couches
o ici la méthode Adam est sélectionnée. On pourra également tester la méthode SGD.
o 1lr est le learning rate.

C!) On pourra fixer la valeur de N_HIDDEN a 50.

La définition d'un réseau de neurones en pytorch repose sur une structure de données
spécifique (un tenseur torch)

* qui contient eut étre stocké sur CPU ou sur GPU
e qui contient, en plus des parametres, des valeurs de gradient.

Toutes les données manipulées par le réseau de neurone doivent étre au format torch.

.‘\‘P Pour passer d'un format numpy a un format torch :
x _tf = torch.FloatTensor([x])
Pour passer d'un format torch a un format numpy :

x = x_tf.detach().numpy()

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2019/01/22 22:36

public:rl_tp4

https://wiki.centrale-med.fr/informatique/public:rl_tp4

On trouve sur le Web de nombreux tutoriels

.\J) remarque: la plupart des fonctions numpy sont implémentées dans I'environnement
torch (torch.sin, torch.pow, torch.prod, torch.zeros, etc...)

Définir la fonction Q

La fonction de valeur Q devient une méthode de classe :

Q(self, obs, act, tf

input = np.concatenate

False):
self.one hot(act

obs

input_tf = torch.FloatTensor

output tf = self.net(input tf

tf:
output tf

output tf.data.numpy

On utilise pour coder I'action un encodage unaire ("one hot encoding:")

A faire

Ecrivez la méthode :

J) def one hot(self,
N

act):

qui retourne un vecteur de taille N_a contenant des zéros partout sauf dans la case

d'indice act.

A faire : il faut maintenant reprendre la plupart des fonctions et des politiques définies dans le TP3 :

e en éliminant la discrétisation

e en remplacant Q[obs, act] par Q(obs, act)

Fonction de perte

Il reste bien sir le plus important qui est la définition de la mise a jour du réseau de neurones en

fonction de I'erreur de prédiction.

La fonction de perte est définie ici comme le carré de I'erreur de prédiction. La dérivée de la fonction
de perte est I'erreur de prédiction qui est rétropropagée dans I'ensemble du réseau pour mettre a jour

les poids par descente de gradient.

https://wiki.centrale-med.fr/informatique/

Printed on 2026/02/04 12:29

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=048443&media=https%3A%2F%2Fpytorch.org%2Ftutorials

2026/02/04 12:29 5/6 TP4 : Q-learning sur les espaces d'états continus

Q loss(self, act, output tf, obs prim, reward, done): # Q TD error
Q prim = self.max Q(obs prim
done self.env. elapsed steps
Q target reward

Q target reward + self.GAMMA * Q prim
Q target tf = torch.FloatTensor([Q_target
torch.sum(torch.pow(Q target tf - output tf

Algorithme

La mise a jour de la fonction de valeur se fait a chaque pas de temps comme dans I'algorithme
tabulaire:

run_episode Q learning(self, env, render = False
obs = env.reset
obs &
True:

render:

env.render

self.CHOICE ‘softmax"':

act = self.choix action_softmax(obs

act self.choix action epsgreedy(obs
obs prim, reward, done, = env.step(act
obs prim &
output tf self.Q(obs, act, tf = True
loss = self.Q loss(act, output tf, obs prim, reward, done
loss.backward
self.optimizer.step
self.optimizer.zero grad
obs obs prim

done:

NB : I'instruction obs[1] *= 100 sert a normaliser les vitesses pour faciliter
I'apprentissage car les valeurs de vitesse ne sont pas du méme ordre de grandeur que
les valeurs de position.

Pour rendre le code plus générique, il est conseillé de définir une fonction de
normalisation des entrées.

@ normalise(obs
type(self.env.env

gym.envs.classic control.cartpole.CartPoleEnv:
obs *
obs *

type(self.env.env

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2019/01/22 22:36 public:rl_tp4 https://wiki.centrale-med.fr/informatique/public:rl_tp4

gym.envs.classic control.mountain car.MountainCarEnv:
obs *
obs

A faire Pour faire fonctionner I'algorithme sur le probéme MountainCar, il est nécessaire

e de paramétrer finement les valeurs d'ALPHA et de GAMMA.
« de faire tourner I'apprentissage sur un nombre d'épisodes tres élevé

(On pourra commencer par tester ['Agent nn sur I'environnement Cartpole qui
3 converge plus facilement vers la solution.

Afin de faciliter la résolution du probleme, reprendre I'outil de visualisation TensorboardX pour
visualiser I'évolution de certaines variables au cours de I'apprentissage.

On regarderaici :

 le nombre total d'itérations a chaque fin d'épisode
* la perte moyenne sur I'épisode
e la valeur de I'état 0

writer = SummaryWriter(log dir='runs/%d/%d-g-%.5f-a-%.5f"' % (ENV_NAME
CHOICE, GAMMA, ALPHA

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/public:rl_tp4

Last update: 2019/01/22 22:36

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 12:29

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/public:rl_tp4

	[TP4 : Q-learning sur les espaces d'états continus]
	TP4 : Q-learning sur les espaces d'états continus
	Environnement
	Mise en oeuvre dans un environnement continu
	Définir la fonction Q

	Fonction de perte
	Algorithme

