3.2.2 Opérateurs multi-tables

Principe : recoupement d'informations présentes dans plusieurs tables :

• Croisement des critères de sélection : Jointure

• Recherche ciblée : **Division**

Jointure: ⋈

Union de deux éléments :

- Soient les relations r et s de schémas R et S.
- On note R ∩ S la liste des attributs communs aux deux schémas et R ∪ S la liste des attributs appartenant à R ou à S.
- soit $t \in r$ et $q \in s$ tels que $t(R \cap S) = q(R \cap S)$

On note t U q le tuple formé des valeurs de t et de q étendues au schéma R U S

Produit cartésien

• Soient r et s (de schémas R et S), avec $R \cap S = \emptyset$

Le produit cartésien $r \times s$ est une nouvelle table de schéma $R \cup S$ combinant les tuples de r et de s de toutes les façons possibles : $\$ r \times s = \{t \neq q : t \neq$

- La **jointure** est une opération qui consiste à effectuer un produit cartésien des tuples de deux relations pour lesquelles certaines valeurs correspondent.
- Le résultat de l'opération est une nouvelle relation.

Jointure

- Soient r et s (de schémas R et S), avec $R \cap S \neq \emptyset$
- La **jointure** r ⋈ s est une nouvelle table de schéma R ∪ S combinant les tuples de r et de s ayant des valeurs communes pour les attributs communs.

 $\$r \bowtie s = \{t \land q \in s, t(R \land S) = q(R \land S)\}$

Exemple

Matière_première :

nom_matière	unité	prix
pétrole	baril	45\$
gaz	GJ	3\$
uranium	lb	12\$

Exportations:

nom_pays	nom_matière	quantité
Algérie	pétrole	180.000
Algérie	gaz	20.000
Niger	uranium	30.000
Arabie Saoudite	pétrole	2.000.000
Arabie Saoudite	gaz	750.000

Matière_première ⋈ Exportations :

nom_pays	nom_matière	quantité	unité	prix
Algérie	pétrole	180.000	baril	45\$
Algérie	gaz	20.000	GJ	3\$
Niger	uranium	30.000	lb	12\$
Arabie Saoudite	pétrole	2.000.000	baril	45\$
Arabie Saoudite	gaz	750.000	GJ	3\$

Exemples de requêtes

• "Donner la liste des PIB/hab des pays exportateurs de pétrole" :

 $\$\Pi_\text{PIB/hab}(\sigma_\text{matière} = \text{pétrole}) (\text{Pays}) \bowtie \text{Exportations}))$

Schéma de base relationnelle :

- Clients (nom_client, adresse_client, solde)
- **Commandes** (<u>num_Commande</u>, <u>nom_client</u>, <u>nom_fournisseur</u>, <u>composant</u>, quantité, montant)
- Fournisseurs (<u>nom_fournisseur</u>, adresse_fournisseur)
- Catalogue (nom fournisseur, composant, prix)
- "Donner le nom et l'adresse des clients qui ont commandé des micro controleurs" :

 $\Pi_{\text{om_client,adresse_client}}(\sigma_{\text{om_posant}} = \text{inicro-controller}) (\text{client}) \text{Commandes}))$

Requêtes multi-tables en SQL

SELECT A1, A2, ..., An

// liste d'attributs

2025/11/06 03:54 3/4 3.2.2 Opérateurs multi-tables

```
FROM R1, ..., Rm // liste de TABLES
WHERE F1 AND ... AND Fl // liste de conditions sur les attributs
// (en particulier conditions sur les attributs
// sur lesquel s'effectue la jointure)
```

Pour exprimer la jointure sur l'attribut 'Aj' commun aux tables 'R1' et 'R2', on écrira : 'R1.Aj = R2.Aj'

Exemples:

```
SELECT PIB_par_hab
FROM Pays NATURAL JOIN Exportations
WHERE nom_matiere = 'petrole'

SELECT PIB_par_hab
FROM Pays, Exportations
WHERE nom_matiere = 'petrole'
AND Pays.nom_pays = Exportations.nom_pays

SELECT PIB_par_hab
FROM Pays
WHERE nom_pays IN (
    SELECT nom_pays
    FROM Exportations
    WHERE nom_matiere = 'petrole'
    )
```

Division

Division

• Soient r (de schémas R) et s (de schémas S), avec S ⊆ R :

La division $r \div s$ est la relation (table) u de schéma R-S maximale contenant des tuples tels que $u \times s \subseteq r$ (avec \times représentant le produit cartésien)

```
\$r \div s = \{ t \mid \forall q \in s, t \mid q \in r \} $$
```

→ on cherche les éléments de t qui "correspondent" à s

Exemples:

Nom_Pays	Nom_matière			
Algérie	Pétrole		Nom matière	
Algérie	Gaz		Pétrole	
Niger	Uranium	÷	Gaz	
Arabie Saoudite	Pétrole			
Arabie Saoudite	Gaz			

<u>Previous</u>: 3.2.1 Opérateurs mono-table <u>Up</u>: Interrogation des bases de données <u>Next</u>: 3.2.3 Recherches composées

From: https://wiki.centrale-med.fr/informatique/ - **WiKi informatique**

 $https://wiki.centrale-med.fr/informatique/public:std-3:cm2:interrogation_des_bases_de_donnees: 3.2.2_operateurs_multi-tables and a superior of the control of the control$

Last update: 2018/01/17 13:26

