
2026/02/04 11:02 1/5 TP1

WiKi informatique - https://wiki.centrale-med.fr/informatique/

TP1

Elements de complexité et programmation par tests (niveau 1).

Les tests

Nous devons être certains que toutes les méthodes, fonctions ou modules que nous créons soient
corrects. On écrira donc des tests pour être moralement sûrs que nos programmes fonctionnent (la
plupart du temps une preuve de code est illusoire).

Pour éviter de retaper tous ces tests à chaque modification du code (ce qui arrive souvent lorsque un
algorithme ou une application est utilisée longtemps) ou à chaque découverte de bug, ils sont
conservés dans un fichier à part. Ceci nous permettra d'exécuter ces tests à loisir (c'est à dire très
souvent) et d'être sûrs que tous les tests seront exécutés. Ces tests sont dit unitaires et sont
essentiels dans toutes les pratiques courantes de code.

Environnement de tests avec pyCharm

De nombreux environnements de tests existent pour pycharm, nous allons utiliser py.test.

Premier exemple

Créez un nouveau projet avec pycharm que l'on pourra appeler essai_tests, puis ajoutez-y un
fichier que vous nommerez aide_mathematiques.py. Ce fichier contiendra le code suivant :

def double(entier):
 return 2 * entier

Pour tester ce code, j'imagine que si les deux conditions suivantes sont remplies :

double(0) vaut 0,
double (21) vaut 42

Ma méthode sera exacte.

On utilise le mot clé assert pour créer notre fonction de test.

Les fonctions de tests doivent toutes commencer par test_

Ajouter la méthode ci-après à votre fichier :

def test_double():
 assert double(0) == 0

https://fr.wikipedia.org/wiki/Test_unitaire
https://www.jetbrains.com/pycharm/help/testing-frameworks.html
http://pytest.org/latest/
http://www.tutorialspoint.com/python/assertions_in_python.htm

Last update: 2016/11/29 12:45 restricted:alg-1:tp1 https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:02

 assert double(21) == 42

et executez là :

test_double()

Si tout s'est passé comme prévu, il ne s'est rien passé. Normal, l'assert était vérifié. Changez un
des assert de la fonction test_double pour que le résultat soit faux (par exemple assert
double(0) == 7). Le programme doit maintenant s'arrêter sur une exception. Chez moi, j'obtiens
ça :

Traceback (most recent call last):
 File
"/Users/francois/Documents/pycharm/essai_tests/aide_mathematiques.py", line
10, in <module>
 test_double()
 File
"/Users/francois/Documents/pycharm/essai_tests/aide_mathematiques.py", line
6, in test_double
 assert double(0) == 7
AssertionError

Ainsi, si tout se passe bien, nos tests sont passés, si le programme s'arrête sur une exception de type
AssertionError, nos tests ne correspondent pas à la réalité. Nous sommes en face d'un bug (qu'il
faut corriger).

Séparer code et tests

Placez la fonction de test (et son exécution) dans un fichier que vous nommerez
test_aide_mathematiques.py.

Faites en sorte qu'il s'exécute sans problème (attention aux import).

On séparera toujours les tests du code. Tout fichier de test commence par test_.

Utilisation de l'environnement de test

Nous allons demander à l'environnement py.test d'exécuter nos tests. Il nous donnera plus
d'informations sur les tests réussis ou échoués (une application normale contient des centaines de
tests).

Commencez par supprimer l'exécution de test_double dans le fichier
test_aide_mathematiques.py.

Un fichier de test ne doit contenir que des fonctions.

http://pytest.org/latest/

2026/02/04 11:02 3/5 TP1

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Puis nous allons demander à pycharm d'exécuter test_aide_mathematiques.py à l'aide de notre
environnement de test. Pour cela, suivez les instructions de la partie Ajouter un environnement
d'exécution et créez une configuration pyhton test > py.test. Ici, les paramètres dont nous aurons
besoin sont :

le champ name, qui donne un nom à notre contexte. Par exemple mes tests
le champ target, qui spécifie quel script utiliser. Cliquez tout à droite de ce champ sur un petit
bouton avec … puis choisissez le fichier test_aide_mathematiques.py

Une fois ceci configuré, cliquez sur le bouton OK.

Un nouvel environnement de test est créé dans l'onglet run. Exécutez le. Vous devriez voir une
nouvelle fenêtre en bas de l'écran pycharm apparaître et vos tests s'exécuter. Si tout s'est bien
passé, une barre verte doit apparaître.

Pour finir cette partie :

séparez votre fonction de tests en 2 fonctions (chaque fonction de test ne doit contenir qu'une
chose à tester, donc a priori qu'un seul assert,
exécutez votre nouvel environnement
ajoutez une fonction de test qui plante. Exécutez votre environnement de test. Voyez la barre
rouge. Supprimez ce test non valide.

Les tests en ligne de commande

La bibliothèque py.test peut directement s'exécuter depuis le terminal. En supposant que votre fichier
de test s'appelle test_aide_mathematiques.py et que vous vous trouviez dans le bon répertoire,
la commande : python3 -m pytest test_aide_mathematiques.py va exécuter vos tests,
comme vous le feriez depuis yCharm.

Calcul de Puissance

On cherche à calculer x^y

Itératif et récursif naïf

Codez un algorithme itératif et un algorithme récursif naïf permettant de calculer la puissance de
deux entiers et leurs tests associés.

Exponentiation rapide

Coder l'algorithme d'exponentiation rapide et ses tests.

https://wiki.centrale-med.fr/informatique/public:python:utiliser_pycharm#ajouter_un_environnement_d_execution
https://wiki.centrale-med.fr/informatique/public:python:utiliser_pycharm#ajouter_un_environnement_d_execution
http://pytest.org/latest/
https://fr.wikipedia.org/wiki/Exponentiation_rapide

Last update: 2016/11/29 12:45 restricted:alg-1:tp1 https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 11:02

Calcul de complexité

Pour mesurer ce temps on pourra utiliser la méthode process_time du module time de python (si
votre python3 est vieux, utilisez la méthode clock de time).

import time

temps_depart = time.process_time()
#ce que l'on veut mesurer
delta_temps = time.process_time() - temps_depart

Vérifiez que :

le temps pris par l'algorithme itératif augmente suivant la valeur de y,
le temps mis par l'algorithme itératif et rapide ne dépend pas de x,
le rapport entre le temps mis pour résoudre une exponentiation avec l’algorithme rapide et
celui mis avec l'algorithme naïf tend vers 0.

Mesurer précisément le temps mis pour exécuter un algorithme est compliqué. Les
oscillations sont normales car le système, l'ide et même python peuvent faire des
choses en parallèle. La mesure de temps utilisée n'est donc pas rigoureusement
proportionnelle à la complexité de l'algorithme mais en est une bonne approximation.

Affichage de courbes

Utilisez le code ci-dessous pour afficher une courbe avec matplotlib où l'abcisse est y et l'ordonnée
le temps mis pour calculer x^y.

import matplotlib.pyplot
from math import log

coordonnees_abcisses = range(2, 101)

x_fois_2 = []
x_carre = []
x_log_x = []

for x in coordonnees_abcisses:
 x_fois_2.append(x * 2)
 x_carre.append(x * x)
 x_log_x.append(x * log(x))

matplotlib.pyplot.ylabel("axe des ordonnees")
matplotlib.pyplot.xlabel("axe des abcisses")

https://docs.python.org/3/library/time.html#time.process_time

2026/02/04 11:02 5/5 TP1

WiKi informatique - https://wiki.centrale-med.fr/informatique/

matplotlib.pyplot.plot(coordonnees_abcisses, x_fois_2, color="#ff0000")
matplotlib.pyplot.plot(coordonnees_abcisses, x_carre, color="#00ff00")
matplotlib.pyplot.plot(coordonnees_abcisses, x_log_x, color="#0000ff")

matplotlib.pyplot.show()

Supperposez les courbes pour les 3 algorithmes. Conclusions ?

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp1

Last update: 2016/11/29 12:45

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp1

	TP1
	Les tests
	Environnement de tests avec pyCharm
	Premier exemple
	Séparer code et tests
	Utilisation de l'environnement de test
	Les tests en ligne de commande

	Calcul de Puissance
	Itératif et récursif naïf
	Exponentiation rapide
	Calcul de complexité

	Affichage de courbes

