
2026/01/10 09:04 1/5 TP4

WiKi informatique - https://wiki.centrale-med.fr/informatique/

TP4

Le but de ce TP est de résoudre des problèmes d'ordonnancement.

Ici, on suppose que l'on a de l'aide pour s'habiller et que l'on cherche à s'habiller le plus vite possible.
On utilisera le même graphe que pour le tp3.

Le fait de tester toutes vos créations n'est plus explicitement demandé car cela doit
toujours être fait.

Structure de graphe

Lors du tp3, vous avez utilisé une structure en liste. Elle nécessitait une correspondance entre des
nombres et le vrai nom des sommets (des chaînes de caractères). Nous allons utiliser ici une structure
plus simple d'utilisation grâce aux dictionnaires (appelé également tableaux associatifs) et aux
ensembles.

Graphe d'habillage

Avec cette structure, on commence par initialiser le graphe et ses sommets :

graphe_habillage = dict()

https://fr.wikipedia.org/wiki/PERT
https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp3
https://wiki.centrale-med.fr/informatique/_detail/restricted:alg-1:tp3:graphehabillage.png?id=restricted%3Aalg-1%3Atp4
https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp3
https://wiki.centrale-med.fr/informatique/public:python:bases#les_dictionnaires
https://wiki.centrale-med.fr/informatique/public:python:bases#les_ensemblesset

Last update: 2016/01/22 11:25 restricted:alg-1:tp4 https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp4

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 09:04

habillage = dict()

habillage["caleçon"] = set()
habillage["chaussettes"] = set()
habillage["montre"] = set()
habillage["pantalon"] = set()
habillage["chaussures"] = set()
habillage["chemise"] = set()
habillage["ceinture"] = set()
habillage["cravate"] = set()
habillage["veste"] = set()

La variable habillage (un dictionnaire) contient 9 clés (les sommets du graphes), associés à un
ensemble vide (les voisins).

On peut maintenant remplir le graphe avec les voisins. On utilise la méthode add des ensemble qui
permet d'ajouter un élément à un ensemble :

habillage["caleçon"].add("pantalon")
habillage["caleçon"].add("chaussures")

habillage["chaussettes"].add("chaussures")

habillage["pantalon"].add("ceinture")

habillage["chemise"].add("ceinture")
habillage["chemise"].add("cravate")

habillage["ceinture"].add("veste")
habillage["cravate"].add("veste")

Le graphe est maintenant complet.

On peut alors afficher ses sommets :

for sommet in habillage:
 print(sommet)

Connaître les voisins d'un sommets :

print(habillage["caleçon"])

Connaître tout le graphe:

for sommet in habillage:
 print("le sommet ", sommet, "a pour voisins ", habillage[sommet])

Ajout du départ et de la fin

2026/01/10 09:04 3/5 TP4

WiKi informatique - https://wiki.centrale-med.fr/informatique/

En ordonnancement il n'existe qu'un sommet (appelé départ) qui n'est voisin de personne et qu'un
sommet (appelé fin) qui n'a pas de voisins. Ceci n'est pas le cas de notre graphe.

On va automatiser l'ajout d'un sommet départ et fin pour notre graphe :

créez deux fonctions :1.
une fonction qui à partir d'un graphe rend l'ensemble des sommets qui ne sont voisins de
personne,
une fonction qui à partir d'un graphe rend l'ensemble des sommets qui n'ont pas de
voisins.

mettez à jour le graphe :2.
ajoutez deux sommets "départ" et "fin" au graphe d'habillage1.
les voisins de départ sont les sommets rendus par la première fonction,2.
ajoutez "fin" comme voisin à tous les sommets initialement sans voisins (ceux rendus par3.
la deuxième fonction).

À la fin le code suivant :

for sommet in habillage:
 print("le sommet ", sommet, "a pour voisins ", habillage[sommet])

Doit rendre quelque chose du genre:

le sommet fin a pour voisins set()
le sommet montre a pour voisins {'fin'}
le sommet chaussures a pour voisins {'fin'}
le sommet cravate a pour voisins {'veste'}
le sommet départ a pour voisins {'montre', 'chemise', 'chaussettes',
'caleçon'}
le sommet veste a pour voisins {'fin'}
le sommet chemise a pour voisins {'ceinture', 'cravate'}
le sommet pantalon a pour voisins {'ceinture'}
le sommet chaussettes a pour voisins {'chaussures'}
le sommet ceinture a pour voisins {'veste'}
le sommet caleçon a pour voisins {'pantalon', 'chaussures'}

Chemin critique

Un chemin critique est un chemin le plus long entre les sommets "départ" et "fin".

On utilisera le tri topologique tu tp3, dont une implémentation utilisant les ensemble peut être :

def tri_topologique(sommet_depart, graphe):

 def tri_topologique_recursif(s, graphe, sommets_ordonnes_inverse,
sommets_marqués):
 sommets_marqués.add(s)
 for voisin in graphe[s]:
 if voisin not in sommets_marqués:

https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp3#l_algorithme

Last update: 2016/01/22 11:25 restricted:alg-1:tp4 https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp4

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 09:04

 tri_topologique_recursif(voisin, graphe,
sommets_ordonnes_inverse, sommets_marqués)
 sommets_ordonnes_inverse.append(s)

 liste_tri_topologique = []
 tri_topologique_recursif(sommet_depart, graphe, liste_tri_topologique,
set())
 liste_tri_topologique.reverse()

 return liste_tri_topologique

On vous demande d'implémenter la recherche du chemin critique en supposant ici que toutes les
tâches sont de durée 1 (vu en td normalement). L'algorithme prend deux paramètres, le graphe (g) et
un tri topologique (tri). Son pseudo code peut-être :

initialisation
pere = dict()
longueur_chemin = dict()
pour chaque sommet x du graphe g:
 pere[x] = None # pas de pere pour l'instant
 longueur_chemin[x] = 0 # chemin plus long entre départ et x vaut 0 pour
l'instant

parcours
pour chaque x de tri:
 pour chaque y de g[x]:
 si x == "départ":
 durée = 0 # durée de la tâche "départ"
 sinon:
 durée = 1 # durée de la tâche x
 si longueur_chemin[y] ≤ longueur_chemin[x] + durée:
 longueur_chemin[y] = longueur_chemin[x] + durée
 pere[y] = x

chemin critique
chemin_critique = []
tache_courante = "fin"
ajoute "fin" au début de chemin critique

tant que tache_courante != "départ":
 tache_courante = pere[tache_courante]
 ajouter tache_courante au debut de chemin critique

rendre chemin_critique

Il n'y ici qu'un seul chemin critique :

'départ',1.
'caleçon',2.
'pantalon',3.
'ceinture',4.

2026/01/10 09:04 5/5 TP4

WiKi informatique - https://wiki.centrale-med.fr/informatique/

'veste',5.
'fin'.6.

Début et fin de tâches

Le chemin critique conditionne le temps mis pour exécuter le projet. Chaque tâche de ce chemin doit
donc commencer exactement après la tache précédente sinon le projet prendra du retard.

Les autres tâches, en revanche, peuvent commencer une fois que tous ses prédécesseurs ont ́été
terminés, mais doivent obligatoirement finir avant le début des tâches qui lui succèdent dans le
chemin vers la fin du projet. On renseigne alors pour chaque tâche une date de début au plus tôt et
une date de début au plus tard (ces dates sont identiques pour les tâches du chemin critique).

On ne prendra pas en compte les marges partagées. En effet commencer une tâche
plus tard va impacter tout ses successeurs.

date au plus tôt

Donné par la valeur de longueur_chemin dans le calcul du chemin critique.

Donnez ces dates pour toutes les tâches.

date au plus tard

Elle est déterminée par le chemin le plus long entre ses successeurs et la fin du projet moins le temps
pour effectuer cette tâche. On peut calculer cette valeur pour toutes les tâches en parcourant les
éléments du tri topologique en partant de la fin. La date de fin d’une tâche est alors le minimum de la
date de fin au plus tard de ses successeurs moins la durée de la tâche (ici toujours 1 sauf pour le
sommet ”départ” qui est de durée 0). On connaît la date au plus tard du dernier ́élément du tri
topologique puisque cet ́élément est le sommet "fin" (il fait parti du chemin critique, donc sa date au
plus tôt est ́égal à sa date au plus tard).

Implémentez l'algorithme permettant de calculer les dates au plus tard et donnez-les pour toutes les
tâches.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp4

Last update: 2016/01/22 11:25

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/restricted:alg-1:tp4

	TP4
	Structure de graphe
	Graphe d'habillage
	Ajout du départ et de la fin

	Chemin critique
	Début et fin de tâches
	date au plus tôt
	date au plus tard

