
2026/01/09 05:25 1/4 TP1

WiKi informatique - https://wiki.centrale-med.fr/informatique/

TP1

Le TP sera écrit en Python. Pour l’affichage de la carte et du chemin proposé, on utilisera la librairie
matplotlib.

import numpy as np
import matplotlib.pyplot as plt
import random

NB :

permutation d’une liste d’entiers :

 np.random.permutation(range(n))

copie de liste :

 copie_de_l = list(l)

→ important pour déterminer la liste des voisins

Problème du voyageur de commerce

Un voyageur de commerce doit visiter n villes au cours de sa tournée numérotées $0,...,n-1$. Ces
villes sont définies par leurs coordonnées géographiques (x_i,y_i). Un parcours consiste à affecter
un ordre à chaque ville :

ordre $i \rightarrow s(i) ∈ 0..n-1$

sous la contrainte que chaque ville doit être visitée une fois et une seule. (autrement dit, s est une
permutation de $(0,...,n-1)$ ⇒ $n!$ solutions). Le coût d’une solution s est : $$J(s) =
\sum_{i=0}^{n-2} d(s(i),s(i+1)) + d(s(n-1), s(0))$$ avec: $$d(s(i), s(j)) = \sqrt{(x_{s(i)} - x_{s(j)})^2
+ (y_{s(i)} - y_{s(j)})^2}$$

Le problème d’optimisation consiste à minimiser la distance totale.

Résolution par optimisation stochastique

Le but est d’écrire une librairie Python permettant de résoudre le problème du voyageur de
commerce.

Un problème de voyageur de commerce sera décrit sous la forme d’une liste de villes avec leurs
coordonnées géographiques.

Pour simplifier, on peut tirer les coordonnées de toutes les villes au hasard entre 0 et 1

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=f30520&media=https%3A%2F%2Fmatplotlib.org%2F

Last update: 2023/09/10 23:35 restricted:opti-c-tp1 https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/09 05:25

pour les abcisses et les ordonnées

Une solution s sera définie come une permutation de la liste des n premiers entiers

Ecrire une fonction qui affiche graphiquement la solution courante (comme une série de segments
reliant les points dans l'ordre parcouru).

Implémentez ensuite plusieurs méthodes de résolution. Vous devez impérativement implémenter

la Méthode de Monte Carlo
et la Méthode glouton.

Pensez en particulier écrire les fonctions suivantes:

randomVoisin(s) : fonction qui retourne un voisin de la solution s pris au hasard
tousLesVoisins(s) : fonction qui retourne la liste de tous les voisins de s
argmin_J(s) : fonction qui retourne le voisin de s qui minimise la fonction J.

Le voisin d'une solution s est obtenu en permutant deux éléments de s
L'ensemble des voisins de s est l'ensemble des permutations de deux éléments
possibles à partir de s.

Puis vous implementerez au choix :

méthode tabou (hyperparamètre K)
la méthode du recuit simulé (hypermaramètres β_0 et ε)

Tableau comparatif

Une fois vos méthodes testées, vous devez indiquer pour chaque méthode la longueur du chemin
trouvé pour n = 10, n = 20, n = 40, n = 80 et n = 160, ainsi que le temps de calcul nécessaire pour
obtenir la solution.

Vous afficherez graphiquement les différents chemins trouvés.

Rappels

Monte Carlo :

données : N
J* ← + infini
pour i de 1 à N:
 tirer un parcours s au hasard
 si J(s) < J* alors:
 J* ← J

2026/01/09 05:25 3/4 TP1

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 s* ← s

Glouton :

données : s
J* ← +infini
tant que J(s) < J*:
 J* <-- J(s)
 s <-- argmin_J(s)

Glouton aléatoire :

données : s
J* <-- +infini
Pour i de 1 à N:
 choisir au hasard s’ voisin de s
 si J(s’) < J(s) alors:
 J* <-- J
 s <-- s’

Tabou :

données : s,K
J* ← +infini
tabou ← []
Pour i de 1 à N:
 si J(s) < J* :
 J* ← J(s)
 s* ← s
 ajouter s à la fin de tabou
 supprimer le premier élément de tabou si |tabou| > K
 s ← argmin_J(s,tabou)

Recuit :

données : s, beta_0, eps
beta <--- beta_0
Pour i de 1 à N:
 choisir au hasard s’ voisin de s
 si J(s’) < J(s) alors:
 ACCEPTER
 sinon :
 p = exp(-beta * (J(s’)-J(s)))
 x <-- tirage_uniforme sur [0,1]
 si x < p alors:
 ACCEPTER
 sinon:
 REFUSER
 si ACCEPTER:
 s <-- s’

Last update: 2023/09/10 23:35 restricted:opti-c-tp1 https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp1

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/09 05:25

 beta <-- (1+eps) * beta

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp1

Last update: 2023/09/10 23:35

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp1

	[TP1]
	[TP1]
	TP1
	Problème du voyageur de commerce
	Résolution par optimisation stochastique
	Tableau comparatif
	Rappels

