2026/01/09 05:43 1/3 TP2 : Probleme d’emploi du temps

TP2 : Probleme d’emploi du temps

Ce TP a rendre et contient plusieurs questions a rédiger. |l est donc conseillé d'utiliser

@ un environnement de programmation de type 'jupyter notebook' contenant a la fois du
code exécutable et des commentaires formattés (cellules 'markdown'). Vous utiliserez
ces cellules formattées pour répondre a certaines questions.

Probleme no 1

On a K créneaux horaires, m enseignants et n classes d’éleves.

e Créneaux : (Lu8,Lul0,...,Vel4,Vel6) - ici: K = 20.
e Professeurs : (Dupont, Durand, Duval, ...) - par ex: m = 32.
e Classes : (6A,6B,...,3D) - par ex: n = 16.

Chaque classe est suivie par 6 professeurs. Chaque professeur est affecté a 3 classes et réalise 3
séances pour chaque classe. Ainsi, chaque professeur réalise un total de 9 séances par semaine, et
chaque classe suit 3x6 = 18 séances de cours (a répartir sur 20 créneaux disponibles).

remarque : on vérifie 3m = 6n soit m = 2n
Affectation des professeurs

On suppose pour simplifier que les professeurs sont désignés par un numéro unique (de 0 a m-1) ainsi
que les classes (classes 0 a n-1) et les créneaux (de 0 a K-1). On suppose qu’est donné au départ le
tableau d'affectation (donnant les classes affectées a chaque professeur). Ainsi, pour tout i, A(i)
={A(i,0),...,A(i,5)} est la liste des 6 professeurs affectés a la classe i.

Indication: on veut définir la matrice des affectations A constituée de 6 lignes et 16
colonnes. Ces affectations seront effectuées de maniere aléatoires. Les colonnes
correspondent aux classes. Le code suivant est souvent incorrect (car un professeur
paut etre affecté 2 fois a la méme classe):

profs = list(range &
_ A
b i range
Ali
j range

prof = np.random.choice(profs
Ali].append(prof
profs.remove(prof

Question Testez ces deux codes. Réfléchissez a une méthode permettant d'obtenir une affectation
valide:

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2023/09/19 22:36 restricted:opti-c-tp2 https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp2

 en effectuant un grand nombre de tirages (méthode de monte carlo)
* a partir d'une affectation initiale incorrecte, par permutation (méthode glouton)

remarque : Il est également possible de contourner le probleme en retirant un
nouveau professeur chaque fois qu'il y a collision. Le code suivant fonctionne la
plupart du temps:

profs = list(range *
A
i range
Ali
j range
trial range :
prof np.random.choice(profs
prof Alil:
trial

Ali].append(prof
profs.remove(prof

"ECHEC: ESSAYEZ UNE NOUVELLE FOIS"

Emploi du temps

Etant données une affectation A, une solution au probleme d'emploi du temps consiste a définir la
semaine de chaque classe sous la forme d'une séquence de K valeurs. Pour tout i, s(i) = (s(i,0), (s(i,1),
s(i,2),... ,s(i,19)) qui est une permutation de la liste (A(i,0), A(i,0), A(i,0), A(i,1), A(i,1), A(i,1), ..., A(i,5),
A(i,5), A(i,5), -1, -1) ou les valeurs -1 correspondent aux 2 séances d'”étude”. Une solution prend donc
la forme d’une matrice de n lignes et K colonnes.

A nouveau pour vous aider, voici les lignes de code permettant de définir un emploi du
temps aléatoire:

S
i range

(- s.append
3] range

s[i].extend([A[i][] Alil[]j Alil[j
s(i].extend([-1,-
sii np.random.permutation(s|i
S np.array(s

Questions:

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/09 05:43

2026/01/09 05:43 3/3 TP2 : Probleme d’emploi du temps

e Combien ce probleme accepte-t-il de solutions?
e Comment définiriez-vous le voisin d’une solution s donnée?
» En fonction de la définition précédente, combien une solution s possede-t-elle de voisins?

Probléme:

On appelle collision le fait qu’'un méme professeur apparaisse 2 fois ou plus dans le méme créneau
(autrement dit une collision est un triplet (i,j,k) tel que (i \neqg j), (s(i,k)=s(j,k)) et s(i,k) \neq -1).
On cherche a proposer un emploi du temps dans lequel il n’y a pas de “collision”.

» En vous inspirant du TP1, définissez les fonctions affiche edt, randomVoisin,
tousLesVoisins, J, argmin_J adaptées aux problemes d'emploi du temps. En particulier, la
fonction de co(t sera égale au nombre total de collisions dans la matrice s.

* |l existe une maniere de calculer le nombre de collisions en O(K*N). Décrivez le principe de cet
algorithme, puis écrivez-le.

e Reprenez certains algorithmes d'optimisation du TP1 (Monte Carlo, Glouton, Tabou, ...) qui,
partant d’une solution s prise au hasard, effectuent une recherche par voisinage pour trouver
un emploi du temps sans collision. Quels sont les algorithmes les plus efficaces?

Probleme no 2

Reprenez le probleme précédent en considérant les contraintes suivantes:

e Chaque professeur suit 5 classes et assure 2 séances par classe.
Chaque professeur effectue 10 séances par semaine

10 professeurs sont affectés a chaque classe

Il'y a 20 classes

Il'y a 40 professeurs

L'algorithme trouve-t-il toujours une solution?

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp2

Last update: 2023/09/19 22:36

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp1
https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp1
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp2

	[TP2 : Problème d’emploi du temps]
	[TP2 : Problème d’emploi du temps]
	TP2 : Problème d’emploi du temps
	Problème no 1
	Affectation des professeurs
	Emploi du temps

	Problème no 2

