
2026/01/09 05:43 1/3 TP2 : Problème d’emploi du temps

WiKi informatique - https://wiki.centrale-med.fr/informatique/

TP2 : Problème d’emploi du temps

Ce TP à rendre et contient plusieurs questions à rédiger. Il est donc conseillé d'utiliser
un environnement de programmation de type 'jupyter notebook' contenant à la fois du
code exécutable et des commentaires formattés (cellules 'markdown'). Vous utiliserez
ces cellules formattées pour répondre à certaines questions.

Problème no 1

On a K créneaux horaires, m enseignants et n classes d’élèves.

Créneaux : (Lu8,Lu10,…,Ve14,Ve16) - ici: K = 20.
Professeurs : (Dupont, Durand, Duval, …) - par ex: m = 32.
Classes : (6A,6B,…,3D) - par ex: n = 16.

Chaque classe est suivie par 6 professeurs. Chaque professeur est affecté à 3 classes et réalise 3
séances pour chaque classe. Ainsi, chaque professeur réalise un total de 9 séances par semaine, et
chaque classe suit 3x6 = 18 séances de cours (à répartir sur 20 créneaux disponibles).

remarque : on vérifie 3m = 6n soit m = 2n

Affectation des professeurs

On suppose pour simplifier que les professeurs sont désignés par un numéro unique (de 0 à m-1) ainsi
que les classes (classes 0 à n-1) et les créneaux (de 0 à K-1). On suppose qu’est donné au départ le
tableau d’affectation (donnant les classes affectées à chaque professeur). Ainsi, pour tout i, A(i)
={A(i,0),…,A(i,5)} est la liste des 6 professeurs affectés à la classe i.

Indication: on veut définir la matrice des affectations A constituée de 6 lignes et 16
colonnes. Ces affectations seront effectuées de manière aléatoires. Les colonnes
correspondent aux classes. Le code suivant est souvent incorrect (car un professeur
paut etre affecté 2 fois à la même classe):

profs = list(range(32))*3
A={}
for i in range(16):
 A[i] = []
 for j in range(6):
 prof = np.random.choice(profs)
 A[i].append(prof)
 profs.remove(prof)

Question Testez ces deux codes. Réfléchissez à une méthode permettant d'obtenir une affectation
valide:

Last update: 2023/09/19 22:36 restricted:opti-c-tp2 https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp2

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/09 05:43

en effectuant un grand nombre de tirages (méthode de monte carlo)
à partir d'une affectation initiale incorrecte, par permutation (méthode glouton)

remarque : Il est également possible de contourner le problème en retirant un
nouveau professeur chaque fois qu'il y a collision. Le code suivant fonctionne la
plupart du temps:

profs = list(range(32))*3
A={}
for i in range(16):
 A[i] = []
 for j in range(6):
 for trial in range(10):
 prof = np.random.choice(profs)
 if prof not in A[i]:
 break
 if trial<9:
 A[i].append(prof)
 profs.remove(prof)
 else:
 print("ECHEC: ESSAYEZ UNE NOUVELLE FOIS")
 break

Emploi du temps

Etant données une affectation A, une solution au problème d'emploi du temps consiste à définir la
semaine de chaque classe sous la forme d’une séquence de K valeurs. Pour tout i, s(i) = (s(i,0), (s(i,1),
s(i,2),… ,s(i,19)) qui est une permutation de la liste (A(i,0), A(i,0), A(i,0), A(i,1), A(i,1), A(i,1), …, A(i,5),
A(i,5), A(i,5), -1, -1) où les valeurs -1 correspondent aux 2 séances d’”étude”. Une solution prend donc
la forme d’une matrice de n lignes et K colonnes.

A nouveau pour vous aider, voici les lignes de code permettant de définir un emploi du
temps aléatoire:

s = []
for i in range(16):
 s.append([])
 for j in range(6):
 s[i].extend([A[i][j], A[i][j], A[i][j]])
 s[i].extend([-1,-1])
 s[i] = np.random.permutation(s[i])
s = np.array(s)

Questions:

2026/01/09 05:43 3/3 TP2 : Problème d’emploi du temps

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Combien ce problème accepte-t-il de solutions?
Comment définiriez-vous le voisin d’une solution s donnée?
En fonction de la définition précédente, combien une solution s possède-t-elle de voisins?

Problème:

On appelle collision le fait qu’un même professeur apparaisse 2 fois ou plus dans le même créneau
(autrement dit une collision est un triplet (i,j,k) tel que (i \neq j), (s(i,k)=s(j,k)) et s(i,k) \neq -1).
On cherche à proposer un emploi du temps dans lequel il n’y a pas de “collision”.

En vous inspirant du TP1, définissez les fonctions affiche_edt, randomVoisin,
tousLesVoisins, J, argmin_J adaptées aux problèmes d'emploi du temps. En particulier, la
fonction de coût sera égale au nombre total de collisions dans la matrice s.

Il existe une manière de calculer le nombre de collisions en O(K*N). Décrivez le principe de cet
algorithme, puis écrivez-le.

Reprenez certains algorithmes d'optimisation du TP1 (Monte Carlo, Glouton, Tabou, …) qui,
partant d’une solution s prise au hasard, effectuent une recherche par voisinage pour trouver
un emploi du temps sans collision. Quels sont les algorithmes les plus efficaces?

Problème no 2

Reprenez le problème précédent en considérant les contraintes suivantes:

Chaque professeur suit 5 classes et assure 2 séances par classe.
Chaque professeur effectue 10 séances par semaine
10 professeurs sont affectés à chaque classe
Il y a 20 classes
Il y a 40 professeurs

L'algorithme trouve-t-il toujours une solution?

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp2

Last update: 2023/09/19 22:36

https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp1
https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp1
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/restricted:opti-c-tp2

	[TP2 : Problème d’emploi du temps]
	[TP2 : Problème d’emploi du temps]
	TP2 : Problème d’emploi du temps
	Problème no 1
	Affectation des professeurs
	Emploi du temps

	Problème no 2

