2026/02/04 09:31 1/5 TP4

TP4

Grace a sqlite, nous pouvons travailler sur une base de données en lecture et en écriture. Cette base
constitue la source de données pour le programme. Pour ce TP, nous reprenons la base bibliotheque
du TP2. Nous allons consulter et modifier les données de cette base dans un programmme Python
comme dans le TP3.

» Créez dans Pycharm un nouveau projet TP4.
e Téléchargez biblio.db et copiez-le dans le dossier de votre projet.
e Créez un programme principal contenant le code suivant et exécutez-le:

sqlite3
0S, SYys

connecte base(db name

os.path.isfile(db _name

db = sqlite3.connect(db _name
"Connexion a ", db _name, "OK."
db

"Erreur de connexion : la base n'existe pas!”
sys.exit

db = connecte base("biblio.db"
¢ = db.cursor

1. Requétes

Testez la requéte permettant d'afficher tous les livres de la base et n'afficher que I'auteur et le titre
de chaque livre. Reprenez au choix une des requétes 8, 9 ou 10 du TP2 et affichez son résultat.

Attention. Pensez a lancer vos requétes a I'aide d'un try. .catch pour pouvoir lire les erreurs sans
interrompre le programme

liste tuples = c.execute("SELECT ... ").fetchall
t liste tuples:
t
sqlite3.0perationalError err:
"Erreur SQL :" + err.args

2. Classes Membre

Les objets de type Membre vont nous servir a stocker les informations contenues dans la table
Membre.

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/restricted:tc-d:tp2:travaux_pratiques_deuxieme_seance_2017
https://wiki.centrale-med.fr/informatique/restricted:tc-d:tp3:travaux_pratiques_troisieme_seance_2017
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=5b3e07&media=https%3A%2F%2Fforge.centrale-marseille.fr%2Fattachments%2Fdownload%2F296%2Fbiblio.db
https://wiki.centrale-med.fr/informatique/restricted:tc-d:tp2:travaux_pratiques_deuxieme_seance_2017

Last
update:
2017/11/29
09:34

restricted:std-3:tp4:travaux_pratiques_quatrieme_seance_2017 https://wiki.centrale-med.fr/informatique/restricted:std-3:tp4:travaux_pratiques_quatrieme_seance_2017

* Nous définissons ici une classe Membre (correspondant a la table Membre de la
base) dont les attributs correspondent exactement a ceux de la table :
idMembre, nomMembre, adrMembre et cpMembre.
ﬂ e Pour prendre en compte les emprunts effectués, nous lui ajoutons un attribut
emprunts servant a stocker les identifiants des livres empruntés sous la forme
d’'une liste de chaines de caracteres (initialement vide).

Ajoutez dans votre projet un fichier membre. py contenant les définitions suivantes :

Membre:
~_init (self, idMembre, nomMembre, adrMembre, cpMembre
self.idMembre idMembre
self.nomMembre nomMembre
self.adrMembre adrMembre
self.cpMembre cpMembre
self.emprunts

emprunte(self, idLivre
self.emprunts += [idLivre

Vous devez maintenant tester le bon fonctionnement de cette classe:

e Importez la classe Membre dans le programme principal (from membre import Membre)
Initialisez un objet m de type Membre avec des valeurs quelconques
Pour vérifier I'initialisation, affichez son contenu en notation pointée:

o m.idMembre

o m.nomMembre

o m.adrMembre

om.cpMembre
Faites-lui emprunter le livre dont le code est "7089PQIU", toujours en notation pointée :
m.emprunte(..)
Pour vérifier I'emprunt, affichez la liste des livres empruntés :

o m.emprunts

3. Classe MembreDAO

La mise en correspondance entre les objets et les tuples d'un tableau de données
s'effectue principalement avec une des quatre opérations suivantes:

Création (Create) : écriture de nouvelles données dans la base
Lecture/recherche (Read) : lecture du contenu de la base
Mise a jour (Update) : changement du contenu existant
Suppression (Delete) : suppression des données

Les accesseurs d'objets (Data Access Object - DAO) sont des interfaces permettent
d'implémenter ces opérateurs:

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:31



2026/02/04 09:31 3/5 TP4

e Les DAO d'une classe A sont des objets servant spécifiquement a interfacer les

@ objets de la classe A avec la base de données
e |Is sont simples d'utilisation et permettent de "cacher" les nombreuses
opérations nécessaires pour réaliser chacune des opérations mentionnées

Nous créerons ici une classe MembreDAO servant a interfacer les objets de la classe Membre avec la
base de données.

3.1 Constructeur

Le constructeur prend comme parameétre le nom de la base de données et initialise I'unique attribut
db.

e Ajoutez un nouveau fichier Python membreDAO. py a votre projet
» Recopiez dans ce fichier le code suivant définissant le constructeur de la classe :

sqlite3, os, sys
membre Membre

MembreDAO:
~_init (self, db _name

os.path.isfile(db_name
db = sqlite3.connect(db _name
"Connexion a ", db name, "OK."
self.db = db

"Erreur de connexion : la base n'existe pas!"
sys.exit

e Testez ce constructeur en créant un objet a de type MembreDAO dans le programme principal.

3.2 méthode getMembreByld

Ajoutez a la classe MembreDAO une méthode nommée getMembreById qui :

e prend en parametre un identifiant entier

effectue une recherche dans la table Membre

initialise un objet de type Membre avec les informations trouvées

effectue une recherche des livres empruntés par ce membre dans la table Emprunts
ajoute les livres trouvés dans la liste des emprunts de I'objet

retourne |'objet

getMembreById(self, idMembre

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last
update:
2017/11/29
09:34

restricted:std-3:tp4:travaux_pratiques_quatrieme_seance_2017 https://wiki.centrale-med.fr/informatique/restricted:std-3:tp4:travaux_pratiques_quatrieme_seance_2017

C!) Attention, pensez a gérer le cas ou le numéro fourni n’est pas présent dans la base

e Dans le programme principal, utilisez I'objet a créé précédemment pour définir I'objet monet
d'identifiant 15, soit:
o monet = a.getMembreById(15)
e Affichez ensuite le contenu de monet

3.3 méthode createMembre

La méthode createMembre sert a ajouter un nouveau membre dans la base de données. Elle :

e prend en parameétre un objet de type Membre

« effectue une requéte d'insertion dans la table Membre a partir de I'objet fourni (INSERT INTO
Membre ..)

e ainsi qu'une requéte d'insertion dans la table Emprunt a partir de la liste des emprunts
contenue dans l'objet.

createMembre(self, membre

La commande d'insertion utilise les valeurs contenues dans I'objet membre. Il est
conseillé d'utiliser la syntaxe suivante :

\HP c.execute("INSERT INTO Membre VALUES (?,7?,7?,?2)"
membre.idMembre membre.nomMembre membre.adrMembre
membre.cpMembre

e || est important de vérifier que l'identifiant de membre n'est pas déja présent
dans la base. Dans ce cas, il ne se passe rien (seul un message d'erreur

s'affiche)!
@ * Pour que les modifications soient prises en compte, il faut ajouter la commande
suivante :

self.db.commit

Testez cette fonction dans le programme principal utilisant le membre que vous avez créé a la
question 2 (pensez a lui attribuer un identifiant vierge, par exemple 30).

Si tout se passe bien, rien ne s'affiche mais il est possible de verifier que I'objet d'identifiant 30 a bien
été inscrit dans la base a I'aide de la fonction getMembreById définie précédemment.

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 09:31



2026/02/04 09:31 5/5 TP4

3.4 Méthode deleteMembre

Définissez une méthode deleteMembre permettant de supprimer un membre dans la base de
données a l'aide de son identifiant (DELETE FROM Membre WHERE ..).

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:

Last update: 2017/11/29 09:34

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/restricted:std-3:tp4:travaux_pratiques_quatrieme_seance_2017

	[TP4]
	TP4
	1. Requêtes
	2. Classes Membre
	3. Classe MembreDAO
	3.1 Constructeur
	3.2 méthode getMembreById
	3.3 méthode createMembre
	3.4 Méthode deleteMembre




