2026/02/04 07:44 1/3 TP1

TP 1

Normalement, vous devez connaitre le langage python, I'environnement pycharm & le
développement par les tests. Si ce n'est pas le cas, les tutos suivants sont pour vous :

e https://informatique.centrale-marseille.fr/tutos/post/python-bases.html

e https://informatique.centrale-marseille.fr/tutos/post/utilisation-pycharm-bases.html
e https://informatique.centrale-marseille.fr/tutos/post/python-tests.html

Calcul de Puissance

On cherche a calculer $x"y$
Itératif et récursif naif

Codez un algorithme itératif et un algorithme récursif naif permettant de calculer la puissance de
deux entiers et leurs tests associés.

Exponentiation rapide

Coder l'algorithme d'exponentiation rapide (cf TD 1, Exercice 5) et ses tests.

Calcul de complexité

Pour mesurer ce temps on pourra utiliser la méthode process_time du module time de python (si
votre python3 est vieux, utilisez la méthode clock de time).

time

temps depart = time.process time
#ce que l'on veut mesurer
delta temps time.process time - temps depart

Vérifiez que :

e |le temps pris par l'algorithme itératif augmente suivant la valeur de y,

* le temps mis par I'algorithme itératif et rapide ne dépend pas de x,

* |e rapport entre le temps mis pour résoudre une exponentiation avec I'algorithme rapide et
celui mis avec l'algorithme naif tend vers 0.

@ Mesurer précisément le temps mis pour exécuter un algorithme est compliqué. Les
. oscillations sont normales car le systeme, I'ide et méme python peuvent faire des
choses en parallele. La mesure de temps utilisée n'est donc pas rigoureusement

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://informatique.centrale-marseille.fr/tutos/post/python-bases.html
https://informatique.centrale-marseille.fr/tutos/post/utilisation-pycharm-bases.html
https://informatique.centrale-marseille.fr/tutos/post/python-tests.html
https://docs.python.org/3/library/time.html#time.process_time

Last
update:
2017/10/26
14:12
J?| proportionnelle a la complexité de I'algorithme mais en est une bonne approximation.

restricted:tc-a:tpl:travaux_pratiques_premiere_seance_2017 https://wiki.centrale-med.fr/informatique/restricted:tc-a:tpl:travaux_pratiques_premiere_seance_2017

Affichage de courbes

Utilisez le code ci-dessous pour afficher une courbe avec matplotlib ou I'abcisse est y et I'ordonnée
le temps mis pour calculer $x™y$.

matplotlib.pyplot
math log
coordonnees abcisses range
x_fois 2
X_carre
x_log x
X coordonnees abcisses:
x_fois 2.append(x *
X_carre.append(x * X

x _log x.append(x * log(x

matplotlib.pyplot.ylabel("axe des ordonnees"
matplotlib.pyplot.xlabel("axe des abcisses"

matplotlib.pyplot.plot(coordonnees abcisses, x fois 2, color="#ff0000"
matplotlib.pyplot.plot(coordonnees abcisses, x carre, color="#00ff00"
matplotlib.pyplot.plot(coordonnees abcisses, x log x, color="#0000ff"
matplotlib.pyplot.show

Supperposez les courbes pour les 3 algorithmes. Conclusions ?

Corrélation aux complexités théoriques

Le rapport entre le temps mis pour effectuer un algorithme et sa complexité théorique doit étre une
droite. Utilisez numpy et polyfit pour calculer la droite de régression linéaire de ce rapport pour
I'algorithme naif et I'algorithme rapide.

numpy

x = list(range
y * i + i x] #y =5x + 10

régression linéaire

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:44

http://www.numpy.org
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

2026/02/04 07:44 3/3 TP1

a, b = numpy.polyfit(x, y

a, b # a=>5, b 10

En déduire le coefficient de corrélation linéaire (on pourra utiliser la méthode corrcoef de numpy).
Conclusion ?

Up : accueil

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:

Last update: 2017/10/26 14:12

WiKi informatique - https://wiki.centrale-med.fr/informatique/

http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html
https://wiki.centrale-med.fr/informatique/accueil
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/restricted:tc-a:tp1:travaux_pratiques_premiere_seance_2017

	TP 1
	Calcul de Puissance
	Itératif et récursif naïf
	Exponentiation rapide
	Calcul de complexité

	Affichage de courbes
	Corrélation aux complexités théoriques

