
2026/02/04 07:44 1/3 TP 1

WiKi informatique - https://wiki.centrale-med.fr/informatique/

TP 1

Normalement, vous devez connaître le langage python, l'environnement pycharm & le
développement par les tests. Si ce n'est pas le cas, les tutos suivants sont pour vous :

https://informatique.centrale-marseille.fr/tutos/post/python-bases.html
https://informatique.centrale-marseille.fr/tutos/post/utilisation-pycharm-bases.html
https://informatique.centrale-marseille.fr/tutos/post/python-tests.html

Calcul de Puissance

On cherche à calculer x^y

Itératif et récursif naïf

Codez un algorithme itératif et un algorithme récursif naïf permettant de calculer la puissance de
deux entiers et leurs tests associés.

Exponentiation rapide

Coder l'algorithme d'exponentiation rapide (cf TD 1, Exercice 5) et ses tests.

Calcul de complexité

Pour mesurer ce temps on pourra utiliser la méthode process_time du module time de python (si
votre python3 est vieux, utilisez la méthode clock de time).

import time

temps_depart = time.process_time()
#ce que l'on veut mesurer
delta_temps = time.process_time() - temps_depart

Vérifiez que :

le temps pris par l'algorithme itératif augmente suivant la valeur de y,
le temps mis par l'algorithme itératif et rapide ne dépend pas de x,
le rapport entre le temps mis pour résoudre une exponentiation avec l’algorithme rapide et
celui mis avec l'algorithme naïf tend vers 0.

Mesurer précisément le temps mis pour exécuter un algorithme est compliqué. Les
oscillations sont normales car le système, l'ide et même python peuvent faire des
choses en parallèle. La mesure de temps utilisée n'est donc pas rigoureusement

https://informatique.centrale-marseille.fr/tutos/post/python-bases.html
https://informatique.centrale-marseille.fr/tutos/post/utilisation-pycharm-bases.html
https://informatique.centrale-marseille.fr/tutos/post/python-tests.html
https://docs.python.org/3/library/time.html#time.process_time

Last
update:
2017/10/26
14:12

restricted:tc-a:tp1:travaux_pratiques_premiere_seance_2017 https://wiki.centrale-med.fr/informatique/restricted:tc-a:tp1:travaux_pratiques_premiere_seance_2017

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:44

proportionnelle à la complexité de l'algorithme mais en est une bonne approximation.

Affichage de courbes

Utilisez le code ci-dessous pour afficher une courbe avec matplotlib où l'abcisse est y et l'ordonnée
le temps mis pour calculer x^y.

import matplotlib.pyplot
from math import log

coordonnees_abcisses = range(2, 101)

x_fois_2 = []
x_carre = []
x_log_x = []

for x in coordonnees_abcisses:
 x_fois_2.append(x * 2)
 x_carre.append(x * x)
 x_log_x.append(x * log(x))

matplotlib.pyplot.ylabel("axe des ordonnees")
matplotlib.pyplot.xlabel("axe des abcisses")

matplotlib.pyplot.plot(coordonnees_abcisses, x_fois_2, color="#ff0000")
matplotlib.pyplot.plot(coordonnees_abcisses, x_carre, color="#00ff00")
matplotlib.pyplot.plot(coordonnees_abcisses, x_log_x, color="#0000ff")

matplotlib.pyplot.show()

Supperposez les courbes pour les 3 algorithmes. Conclusions ?

Corrélation aux complexités théoriques

Le rapport entre le temps mis pour effectuer un algorithme et sa complexité théorique doit être une
droite. Utilisez numpy et polyfit pour calculer la droite de régression linéaire de ce rapport pour
l'algorithme naïf et l'algorithme rapide.

import numpy

x = list(range(10))
y = [5 * i + 10 for i in x] # y = 5x + 10

régression linéaire

http://www.numpy.org
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

2026/02/04 07:44 3/3 TP 1

WiKi informatique - https://wiki.centrale-med.fr/informatique/

a, b = numpy.polyfit(x, y, 1)
print(a, b) # a = 5, b = 10

En déduire le coefficient de corrélation linéaire (on pourra utiliser la méthode corrcoef de numpy).
Conclusion ?

Up : accueil

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/restricted:tc-a:tp1:travaux_pratiques_premiere_seance_2017

Last update: 2017/10/26 14:12

http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html
https://wiki.centrale-med.fr/informatique/accueil
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/restricted:tc-a:tp1:travaux_pratiques_premiere_seance_2017

	TP 1
	Calcul de Puissance
	Itératif et récursif naïf
	Exponentiation rapide
	Calcul de complexité

	Affichage de courbes
	Corrélation aux complexités théoriques

