
2026/02/04 07:41 1/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Fichiers et indexation

Les données numériques sont une des composantes essentielles des programmes
informatiques.

Il s'agit par définition des informations qui doivent être conservées entre deux
exécutions.
Avec l’augmentation des capacités de stockage et leur mise en réseau, les
quantités de données conservées ont considérablement augmenté au cours des
dernières décennies.

Dans le cadre de ce cours, nous aborderons :

la question du stockage de ces données sur un support informatique (Fichiers,
bases de données),
ainsi que les méthodes permettant de consulter et mettre à jour régulièrement
ces données.

1 Données et fichiers

1.1 Transport et flux de données

La transmission des données entre programmes nécessite l’ouverture d’un canal de
communication

entre client et serveur
par lequel transitent les données (les requêtes et les réponses).

Le transport est géré
par le système d’exploitation (lorsque les données transitent au sein d’un même
ordinateur)
ainsi que par des routeurs (lorsque les données transitent d’un ordinateur à l’autre sur le
réseau).

Au niveau du client,
les réponses en provenance du serveur sont organisées sous la forme d’une liste,
qu’on appelle un flux de données.

La notion de flux de données signifie que les réponses sont lues dans un ordre fixe,
telles qu’elles ont été écrites au niveau du serveur. On parle de lecture à accès
séquentiel (par opposition à la lecture à accès aléatoire).

Formats d'échange

Les principaux formats d'échange de données sont :

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

csv
json
xml

TODO

Exemples :

Clients
Cours de l'Euro
codes postaux
codes postaux

1.2 Conservation des données

La conservation des données repose principalement sur la structure de stockage,

définissant la manière dont les données sont physiquement stockées sur le support,
autrement dit la méthode de rangement de la série de mesures :

fichiers,
répertoires,
index,
etc…

reposant sur des supports de stockage (ou mémoires) :
mémoire centrale,
mémoires secondaires (disque dur, CD-ROM, memoire flash (SSD), etc…).

Trame et bloc de données

Un jeu de valeurs encodé et stocké sur un support informatique est appelé un “enregistrement”,

conservé sous la forme d'une trames de données.
Une trame peut obéir à un format textuel ou binaire

Encodage binaire :

Définition d’une trame, en général de taille fixe.
Chaque rubrique occupe un nombre d’octets déterminé, afin que chaque jeu de données
occupe la même place en mémoire.
L’utilisation de trames de taille fixe facilite le stockage et la conservation des données sur les
supports magnétiques (disque dur, etc…)
Les données sont transmises dans un format numérique (type) identique à celui utilisé en
mémoire centrale.

Trame de données

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=ef2f95&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fclients.xml
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=f056d1&media=http%3A%2F%2Fwww.ecb.int%2Fstats%2Feurofxref%2Feurofxref-daily.xml
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=0497f1&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2FZipssortedbycitystate.csv
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=93e60e&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2Fcodes-postaux.json

2026/02/04 07:41 3/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Encodage textuel :

Le jeu de données est codé dans un format descriptif (contenant à la fois les valeurs et une
description des données : types, attributs, …).
Ce format facilite la transmission d’un programme à un autre (format “plat”) mais est moins
propice au stockage.
La “sérialisation” est l’opération qui consiste à encoder des données sous la forme d’un texte
brut (codage ASCII ou utf8), en “perdant” le moins possible d’information.
Des exemples de formats textes standards sont donnés en 2.1.3 Structures de données.

Tableaux statiques

Bloc de données

Un bloc de données correspond à une série d’enregistrements obéissant au même format:

Chaque enregistrement est de taille identique;
L'encodage des données est le même.

La structure de base servant à stocker à une série d’enregistrements est le tableau de données à 2
dimensions :

Tableau de données (data frame) = intitulé de colonnes + liste de lignes
Intitulé de colonne = nom de l’attribut
Une ligne = un enregistrement

Structure sous-jacente : tableau à 2 dimensions (ou matrice de données)

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=8f5184&media=https%3A%2F%2Fwiki.centrale-marseille.fr%2Finformatique%2F_media%2Fpublic%3Astd-3%3Acm1%3Aaspect_physique%3As7-tuple.png
https://wiki.centrale-med.fr/informatique/public:std-3:cm1:aspect_physique:2.1.3_structures_de_donnees
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=888747&media=https%3A%2F%2Fwiki.centrale-marseille.fr%2Finformatique%2F_media%2Fpublic%3Astd-3%3Acm1%3Aaspect_physique%3As7-bloc.png

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Tableau statique

Un bloc de données obéit formellement à une structure de type tableau statique:

Un tableau statique est une structure séquentielle de taille fixe, constituée de N "cases"
Les cases peuvent être "libres" ou "occupées".

Le tableau statique correspond à l'organisation séquentielle fondamentale des
mémoires informatique :

taille limitée du support matériel
données accessibles grâce à leur adresse (position dans le tableau)
problème de rangement (il faut conserver une information sur la position des
données déjà enregistrées) ⇒ organisation logique des données sur le support.

Dans un tableau statique T, la position des cases reste fixe au cours de
l'utilisation :

T[i] désigne toujours la mếme zone mémoire
Analogie : les pages d'un cahier

Dans un tableau dynamique (liste python par exemple), la position des cases
varie au cours de l'utilisation :

T[i] ne désigne pas toujours la mếme zone mémoire
Analogie : briques de lego, puzzle glissant

2026/02/04 07:41 5/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Structure de stockage

Les mémoires informatiques sont des structures statiques. Une fois les données sauvegardées sur le
disque, il est difficile d’insérer ou de supprimer des éléments.

La difficulté consiste à définir une organisation logique du tableau permettant de gérer efficacement
un tel ensemble (qui peut être de grande taille) :

savoir où enregistrer les données
savoir comment les retrouver

On parle de structure de stockage. Une telle structure doit permettre :

d’ajouter des données
d'effacer des données
d’accéder rapidement à une case particulière

Stockage dense

On considère un ensemble de k données stockés dans un tableau de données statique T de N cases
(avec 0≤k ≤ N).

Remarques :

Les cases du tableau sont numérotées de 0 à N-1
Les données sont de type quelconque mais chaque case ne peut contenir qu'une donnée
Si i est un indice de case, T[i] désigne le contenu de la case
N est fixé mais k varie en fonction du nombre de données stockées

Propriété : les données sont stockés dans les k premières cases du tableau. Ainsi, les cases de 0 à
k-1 sont occupées et l'indice k désigne la première case libre.

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Opérations fondamentales :

insertion de données : O(1)
recherche de données : O(k)
suppression de données : O(k)

Stockage distribué

On conserve une table des cases libres

Index bitmap :
Chaque bit correspond à une case (libre/occupé).
Lors de l’écriture d'une nouvelle donnée (allocation), on fait passer le bit de 0 à 1
Lorsque la donnée est effacée, le bit correspondant passe de 1 à 0

$$B = \underset{0}{0}{10010100100.....}\underset{n-1}{01}$$

Table d'allocation:
On considère un tableau de taille n dans lequel $k < n$ cases sont occupées.
Chaque bloc de données d est indexée par l'adresse $i < n$ donnant sa position dans
le tableau
On connaît également sa taille m.
La table d'allocation donne pour chaque bloc :

sa position i
le nombre m de cases occupées

Stratégies d’allocation

https://wiki.centrale-med.fr/informatique/_detail/tc_info:s7_td1_2016_corrige.png?id=tc_info%3A2020_cm_index

2026/02/04 07:41 7/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Stratégie par bloc: on alloue des blocs composés de plusieurs cases (S’il existe des blocs libres
consécutifs, ils sont fusionnés en un seul)

On souhaite :

minimiser le nombre de blocs libres
maximiser la taille des blocs libres

Plus proche choix : la liste des blocs libres est parcourue jusqu’à trouver un bloc de la taille
demandée (ou sinon, le premier bloc de taille supérieure, qui est alors découpé en deux blocs).

first fit : le premier bloc suffisamment grand pour les besoins
best fit : le plus petit bloc qui ait une taille au moins égale à la taille demandée
worst fit : le plus grand bloc disponible (qui est donc découpé)

exercice

Écrire un algorithme permettant d'insérer une donnée d de taille m dans le
premier bloc libre disponible (pensez à mettre à jour la table d'allocation B).

Autre stratégie (allocation rapide): On alloue des blocs de 1,2,4,8,…2K pages. Pour une taille donnée
2i-1 < n < 2i, on commence par chercher les blocs de taille 2i, puis 2i+1, … jusqu’à 2K , en divisant
ces blocs le cas échéant.

Problème des stratégies par bloc: s’il y a trop de données, on obtient des blocs de taille 1 –>
nécessité de réorganiser (défragmenter)

1.3 Fichiers et répertoires

La mémoire secondaire n’est pas directement accessible (les programmes n’ont pas la possibilité
d’aller écrire directement sur le disque). Le système d’exploitation assure ainsi l’indépendance du
programme par rapport à l’emplacement des données, au travers d’instructions d’entrée/sortie
spécialisées.

Pour que les programmes puissent écrire sur le disque, on introduit des objets intermédiaires : les
fichiers. Un fichier est caractérisé par (nom, emplacement (volume, arborescence), droit d’accès,
taille,…). Il s’agit d’une entité logique. Tout programme utilisant un fichier passe par le système
d’exploitation qui, à partir des informations, détermine la localisation des données sur le support.

A retenir :

Un fichier est une référence vers un ou plusieurs blocs de données, enregistrés
sur un support physique.
Un fichier est caractérisé par son descripteur, constitué de son nom, son chemin
d’accès, ses droits d’accès (lecture/écriture/exécution) selon les utilisateurs, sa
position sur le support, sa taille, etc…

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

La gestion des fichiers est une des fonctions essentielles des systèmes d’exploitation :
possibilité de traiter et conserver des quantités importantes de données
possibilité de partager des données entre plusieurs programmes.

Opérations de base :

Ouverture : initialisation d'un flux en lecture ou en écriture
Lecture : consultation des lignes l'une après l'autre (à partir de la première
ligne), dans l'ordre où elles ont été écrites sur le support
Ecriture : ajout de nouvelles données à la suite ou en remplacement des
données existantes

Volume

Le volume est le support sur lequel sont enregistrées les données. On parle de
mémoire secondaire (Disque dur, disquette,CD-ROM, etc…). Un volume est divisé en
pistes concentriques numérotées de 0 à n (par ex n = 1024). Chaque piste supporte
plusieurs enregistrements physiques appelés secteurs, de taille constante (1 secteur =
1 page).

Page (ou secteur)

Les pages sont les unités de base pour la lecture et l'écriture. une page est une zone
contiguë de la mémoire secondaire qui peut être chargée en mémoire centrale en une
opération de lecture. Taille standard : une page = 1-2 ko.

La mémoire secondaire est donc organisée comme un tableau de pages :
(T[0],…,T[L-1]), où L est le nombre de pages. Chaque page fait m octets. Chaque page
peut être libre ou occupée.

Répertoires Chaque volume possède un numéro appelé le label du volume. Tous les descripteurs de
fichiers sont regroupés dans une table des matières appelée Répertoire (Directory).

Remarque : cette table des matières est en fait un fichier dont le descripteur est contenu dans le label
du volume.

Organisation hiérarchique :

Lorsque le nombre de fichiers est élevé, les descripteurs de fichiers sont classés dans plusieurs
répertoires, organisés sous une forme arborescente.
Le répertoire de plus bas niveau hiérarchique est appelé racine → chemin d’accès (path)

2026/02/04 07:41 9/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Consultation des données : lecture d’un fichier (Read)

Méthode traditionnelle pour le traitement de fichiers de petite taille. La consultation des données
nécessite d’ouvrir une “communication” entre le programme et les fichiers. Ce canal de
communication permet de recevoir un flux de données.

Pour établir la communication, il faut connaître : le “chemin d’accès” aux données (disque dur local)
l’”adresse” des données (lorsqu’il s’agit de données stockées sur un serveur distant)

L’opération d’ouverture de fichier initialise un descripteur de fichier, qui sert à désigner (dans le
programme) le fichier sur lequel on travaille, et d’accéder au contenu du flux.

Ouverture simple:

Python

f = open('/chemin/vers/mon/fichier.dat','r')

Le deuxième argument représente le mode d’ouverture, ici ’r’ représente une
ouverture en mode lecture.

https://wiki.centrale-med.fr/informatique/_detail/tc_info:arborescence_unix.png?id=tc_info%3A2020_cm_index

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

Ouverture avec test :

Il est important de vérifier que cette opération d’ouverture s’effectue correctement avant de
poursuivre le programme (nombreuses possibilités d’erreur : fichier effacé, erreur de nom, pas de
droits de lecture,…). On utilise une instruction de test spécifique pour vérifier que l’ouverture du
fichier s’est correctement effectuée, de type try…catch… (essaye … sinon …) permettant de
prévoir une action de secours lorsqu’une une opération “risquée” échoue.

Python

try :
 f = open('/chemin/vers/mon/fichier.dat','r')
except IOError:
 print "Erreur d'ouverture!"

Lorsque l’opération d’ouverture est réalisée avec succès, le flux de données devient accessible en
lecture (les premières lignes du fichier sont chargées en mémoire et une tête de lecture se positionne
sur le premier caractère de la première ligne). Il ne reste plus qu’à lire les données.

La consultation des données s’effectue séquentiellement à l’aide de l’opérateur de lecture readline.
Chaque appel à cet opérateur charge les nouvelles données et déplace la tête de lecture vers les
données suivantes. Cette opération peut être effectuée plusieurs fois jusqu’à atteindre la fin de
fichier.

Algorithmes de bas niveau (niveau système d’exploitation)

Remarque : Lecture/Ecriture

Les opérateurs lire_ligne (readline) et écrire_ligne (write) ne travaillent pas
directement sur les données du fichier. Les données du fichier sont chargées en
mémoire centrale dans une mémoire “tampon”. L’objet f servant à décrire le fichier a
comme attributs :

t : table des pages,
i : numero de la page courante,
p : tableau d'octets de la page courante (mémoire tampon),
j : position dans la page courante (tête de lecture).

Lors des opération de lecture, la mémoire tampon est mise à jour au fur et à mesure
qu’on avance dans la lecture du fichier par des opérations de lecture sur le disque. En
général, plusieurs pages sont chargées en avance. Lors d’une opération d’écriture, la
mémoire tampon reçoit les nouvelles données à écrire. Ces données sont
effectivement écrites sur le disque lorsque le tampon est suffisamment rempli ou lors
de l’opération de fermeture. Au moment de l’écriture effective, le système
d’exploitation fait appel à un opérateur d’allocation pour choisir le “meilleur” bloc où
stocker les données.

Si on suppose que les données sont rangées sous la forme d’un tableau de lignes, chaque opération

2026/02/04 07:41 11/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

de lecture consiste à consulter une ligne du tableau, et à positionner la tête de lecture sur la ligne
suivante.

Exemples : lecture de données texte : chaque opération de lecture lit tous les
caractères jusqu’au caractère “fin de ligne”.

1. Lecture d’une ligne unique :

Python

s = f.readline()

2. Lecture de toutes les lignes (la lecture s’effectue dans une boucle) + affichage de la
ligne:

Python

for s in f :
 print s

Enregistrement des données : sauvegarde dans un fichier (Write)

L’opération de sauvegarde des données est l’opération complémentaire de la lecture. De nouvelles
données doivent être enregistrées sur le disque dur en vue d’une consultation future. Le format de
sauvegarde peut être de type texte ou de type binaire. Nous présentons ici la sauvegarde des
données dans des formats texte.

Comme dans le cas de l’opération de lecture, il faut au préalable définir dans le programme un
descripteur de fichier servant de point d’entrée pour les opération d’écriture. On effectue ce qu’on
appelle une ouverture en mode “écriture”.

Python

try :
 f = open('monfichier.dat','w')
except IOError:
 print "Erreur d'ouverture!!"

On notera qu’il existe en python (ainsi qu’en C, C++, …) plusieurs modes d’ouverture exprimés par le
deuxième argument de la fonction open. On retiendra le mode ‘w’ (création d’un nouveau fichier vide)
et le mode ‘a’ (ajout de nouvelles données à la suite d’un fichier déjà existant).

La sauvegarde dans le fichier s’effectue à l’aide d’un opérateur d’écriture. Dans le cas des chaînes de
caractères, l’opérateur d’écriture sauvegarde ces données à la suite des données déjà écrites.

Python

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

f.write("Bonjour!\n")

La sauvegarde de données nécessite d’effectuer un choix sur le mode d’encodage, obéissant en
général à une norme bien précise (csv, json, xml, etc…). Voir section 1.3.

Une fois les opérations de lecture ou d’écriture terminées, il est nécessaire de fermer le fichier.
L’opération de fermeture assure que les données sont effectivement enregistrées sur le disque (et
non simplement stockées dans la mémoire tampon - voir section XXX).

Voir aussi :

Gestion des fichiers sous Unix

2 Index et Données

Rappel

Une donnée informatique est un élément d'information ayant subi un encodage
numérique

Consultable/manipulable/échangeable par des programmes informatiques
Possibilité de la conserver sur un support de stockage numérique (CD-ROM,
disque dur, SSD, …)

Les informations peuvent être stockés dans un fichier (ex : fichier csv).
Un jeu de valeurs encodé et enregistré est appelé un enregistrement

Pour une gestion efficace des données, il est nécessaire de pouvoir identifier chaque enregistrement
de façon unique.

L'indexation des données repose sur un principe simple d'étiquetage consistant à attribuer une
étiquette différente à chaque enregistrement.

Cette étiquette peut être une suite de caractères arbitraires, un entier, ou un descripteur1.
explicite. On parle en général de clé ou d'identifiant pour désigner cette étiquette.
Il existe un ordre total dans le domaine de valeurs des clés, permettant d'effectuer des2.
opérations de tri sur les données a partie de la valeur de leur clé.

2.1 Définitions et propriétés

L'indexation des données consiste à attribuer à chaque donnée distincte un identifiant
unique.
On parle également de clé de l'enregistrement:

On peut représenter l'opération d'indexation sous la forme d'une fonction. Si d est le jeu de valeurs,
$k(d)$ désigne l'identifiant de ce jeu de valeurs.

https://wiki.centrale-med.fr/informatique/public:unix:accueil

2026/02/04 07:41 13/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Unicité/spécificité

L'indexation suppose l'existence d'une bijection entre l'ensemble des données et l'ensemble des clés,
permettant d'assurer l'unité et la spécificité de la clé

soient d_1 et d_2 deux enregistrements,
Unicité :

si $d_1 = d_2$, alors $k(d_1)=k(d_2)$.
Spécificité:

si $k(d_1) = k(d_2)$, alors $d_1=d_2$.

Efficacité

L'existence d'un identifiant unique pour chaque jeu de valeurs d permet la mise en œuvre d'une
recherche par identifiant (ou recherche par clé).

La recherche par identifiant repose sur une fonction d'adressage I qui à tout identifiant k associe
sa position (entrée) i dans un tableau de données: $I : k \rightarrow i$. Ainsi si k est l'identifiant
servant à la recherche, l'extraction des informations se fait en 2 étapes:

$i = I(k)$ (lecture de l'index des données)
$d = D[i]$ (lecture des données elles mêmes)

La lecture de l'index repose sur le parcours d'une liste $$L = ((k_1, i_1), (k_2, i_2), ...,
(k_N, i_N))$$ telle que $k_1 < k_2 < ... < k_N$, de telle sorte que la recherche
s'effectue en O(log N) (recherche dichotomique).

Compacité

L'identifiant doit en pratique tenir sur un nombre d'octets le plus petit possible pour que la liste L
puisse être manipulée en mémoire centrale. Autrement dit, il faut que :

$|k| << |d|$

pour que :

$|L| << |D|$

Un identifiant entier, codé sur 4 octets, permet d'indexer jusqu'à $2^{4 \times 8}
\simeq 4\times10^9$ données différentes.

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

2.2 Utilisation

Définir un ordre sur les données

La présence d'un identifiant permet de définir un ordre total sur les données :

ordre sur les entiers (identifiant entier)
ordre alphabétique (identifiant texte)
ordre ASCIIbétique (chaîne de caractères quelconque)

Lier les données

Dans le cas des bases de données, l'identifiant constitue une référence vers les jeux de valeurs des
tableaux de données. Une référence permet de lier les données d'une table aux données d'une autre
table.

Exemple :

Artistes
Albums
Pistes

Pour chaque album de la table des albums, l'identifiant d'artiste (ici un numéro) permet de lier
l'album avec l'artiste (ou groupe) correspondant.
Pour chaque piste de la table des pistes, l'identifiant d'album permet de lier la piste à l'album
correspondant (et donc à l'artiste correspondant par transitivité)

Exercice : donner le nom du groupe qui interprète la piste 'Paradise City'.

Structure d'ensemble

L'index définit l'appartenance d'une donnée à un ensemble.

Soit \mathcal{E} un ensemble de données indexées : $$ \mathcal{E} = \{d_1, d_2, ..., d_K\} $$ On
a l'équivalence : $$ d \in \mathcal{E} \Leftrightarrow k(d) \in I $$

Ainsi, il ne peut y avoir de doublon car $\forall d$:

$k(d)$ est unique
$i = I(k(d))$ est unique ssi $d \in \mathcal{E}$ et indéfini sinon.

3 Exemples d'indexation des données

3.1 Adressage des tableaux

L'exemple le plus simple d'indexation est celui fourni par les numéros de case d'un tableau.

Soit D un tableau de n lignes
le numéro $i < n$ est à la fois l'identifiant et l'entrée (ou adresse) de la ligne $D[i]$

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=c0ba16&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2FArtists.csv
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=050689&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2FAlbums.csv
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=fabf01&media=http%3A%2F%2Fedauce.perso.centrale-marseille.fr%2Fvisible%2FTrack.csv

2026/02/04 07:41 15/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

3.2 Maintenance centralisée d'un index

Dans le cas général, l'identifiant n'est pas égal à l'entrée!

On sépare donc l'index k de l'entrée i:

k est l'identifiant (ou clé) de la donnée d. Il s'agit d'une valeur numérique quelconque.
i est l'entrée de la donnée d, correspondant à sa position dans le tableau de données.

Lors de l'ajout de nouvelles données, il est nécessaire de définir une méthode
permettant d'assurer:

l'intégrité de l'index
l'unicité de l'identifiant

Il existe différentes méthodes permettant d'assurer l'intégrité de l'index:

Le programme maintient une liste triée des identifiants déjà utilisées. Lors de l'ajout d'une
nouvelle donnée, il s'assure que l'identifiant n'est pas déjà présente dans la liste.

Coût :
$O(n)$ en mémoire
$O(\log n)$ pour l'ajout

Dans le cas où les identifiants sont des numéros (entiers), il est possible d'utiliser un compteur
qui s'incrémente à chaque nouvelle insertion.

Coût :
$O(1)$ en mémoire
$O(1)$ pour l'ajout

Exemples d'indexation centralisée :

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=987112&media=https%3A%2F%2Fwiki.centrale-marseille.fr%2Finformatique%2F_media%2Fpublic%3Astd-3%3Acm1%3Aaspect_physique%3As7_index.png

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

numéro INE (étudiants)
numéro URSSAF (sécurité sociale)
numéro d'immatriculation (véhicules)
numéro de compte en banque
code barre
etc.

3.3 Indexation pseudo-aléatoire : les fonctions de hachage

Utilisation d'une fonction de hachage :

qui "calcule" la valeur de l'identifiant à partir des valeurs du jeu de valeurs à insérer.
La fonction de hachage doit être telle que la probabilité de choisir le même identifiant pour
deux données différentes soit extrêmement faible.

Attribution d'un identifiant arbitraire entre 0 et n-1

Etape 1 : transcodage binaire des données
i = int.from_bytes(d, byteorder='big')
avantage : les données différentes ont un code entier différent
mais : |i| = |d|

s = 'paul.poitevin@centrale-marseille.fr'
d = bytes(s, 'ascii')
i = int.from_bytes(d, byteorder='big')
print("i =", i)

donne :

i =
8528065861149768815100567784717691806974718591507288012415052936271731682296
24211058

Etape 2 : réduction du code
Méthode 1 : le modulo n (reste de la division entière par n)

k = H(i) = i mod n
Avantage :

$|k| << |d|$
Inconvénient:

deux données différentes peuvent avoir le même code
ce codage revient à sélectionner les bits de poids faible
deux données proches ou très similaires auront un index proche ou similaire :
si j = i + 1, H(j) = H(i) + 1 (presque toujours)
—> il faut prendre n premier

$n = 2^{32} = 4294967296$:
H_code(paul.poitevin@centrale-marseille.fr) = 1697539698
H_code(martin.mollo@centrale-marseille.fr) = 1697539698

$n = 67280421310721$ (premier):

2026/02/04 07:41 17/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

H_code(paul.poitevin@centrale-marseille.fr) = 36148249469507
H_code(martin.mollo@centrale-marseille.fr) = 65330032132071

Méthode 2 : combiner produit et modulo – soient m et n deux nombres premiers entre eux
k = H(i) = (i * m) mod n
Avantage :

$|k| << |d|$
deux entiers proches donneront auront des codes très différents : si j = i +
1, j * m - i * m = m

Inconvénient :
deux données différentes peuvent avoir le même code

le produit i * m peut etre coûteux à calculer

Méthode 3 : Hachage cryptographique :
Le hachage cryptographique est construit de telle sorte qu'il soit très difficile de trouver
un entier j != i tel que H(i) = H(j).
Un tel code est appelé une "signature".

Exemples :
MD4
SHA

Exemple

Le gestionnaire de bases de données MongoDB utilise une indexation des données par clé
cryptographique.

4 Généralisation : multi-indexation

TODO

5 Structures de données pour l'indexation

5.1 Liste triée

TODO

5.2 Index bitmap

TODO

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=f28274&media=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FMD4
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=de057e&media=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FSecure_Hash_Algorithm
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=67e702&media=https%3A%2F%2Fopenclassrooms.com%2Ffr%2Fcourses%2F1915371-guide-de-demarrage-pour-utiliser-mongodb

Last update: 2021/01/27 21:46 tc_info:2020_cm_index https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

https://wiki.centrale-med.fr/informatique/ Printed on 2026/02/04 07:41

5.3 Les B-arbres

Que faire lorsque l'index ne tient pas en totalité dans la mémoire centrale ?

L'index est découpé en "blocs"
Les blocs sont organisés sous la forme d'un arbre (B-arbre = "Balanced Tree")

Considérons un index composé de couples (clé, numero de page). On suppose que l’index est
également découpé en pages, chaque page d'index contenant au maximum b clés. Si l’index
comporte beaucoup de pages, il est intéressant de l’organiser hiérarchiquement en pages et sous-
pages, selon une organisation appelée "B-arbre" (Balanced Tree):

chaque noeud de l’arbre contient une liste croissante de couples (clé, numéro d’une sous-page)
chaque clé est dupliquée dans sa sous-page :

les clés contenues dans la sous-page sont inférieures ou égales à elle,
les clés contenues dans la sous-page sont strictement supérieures à celles de la sous-
page précédente.
les feuilles contiennent des couples (clé, numéro de la page du tableau de données)

<!-- <note> **algo : lecture de l'Index** * paramètre d’entrée : k I ←
charger la racine de l’arbre tant que I n’est pas une feuille : k’ ← première
clé de I tant que k > k’ k’ ← clé suivante I ← charger sous-page de k’
</note> -->

Remarque : Pour que l’accès aux données soit efficace,

il faut que l’arbre soit le moins profond possible : arbre “équilibré”.

<!-- * Dans ce cas, * chaque noeud a ''b'' fils, * et la profondeur de
l’arbre est de l’ordre de logb(N). * Pour charger la page contenant le tuple
cherché, * il faut donc logb(N) + 1 lectures sur disque. * En pratique, il
existe des algos permettant d’assurer que chaque noeud contient entre b/2 et
b clés (sauf la racine). -->

https://wiki.centrale-med.fr/informatique/_detail/restricted:std-3:td1:b-tree.png?id=tc_info%3A2020_cm_index

2026/02/04 07:41 19/19 Fichiers et indexation

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Voir :

http://fr.wikipedia.org/wiki/Arbre_B
http://en.wikipedia.org/wiki/B-tree)

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

Last update: 2021/01/27 21:46

http://fr.wikipedia.org/wiki/Arbre_B
http://en.wikipedia.org/wiki/B-tree
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_index

	[Fichiers et indexation]
	Fichiers et indexation
	1 Données et fichiers
	1.1 Transport et flux de données
	Formats d'échange

	1.2 Conservation des données
	Trame et bloc de données
	Tableaux statiques
	Bloc de données
	Tableau statique

	Structure de stockage
	Stockage dense
	Stockage distribué
	1.3 Fichiers et répertoires
	Consultation des données : lecture d’un fichier (Read)
	Ouverture avec test :

	Enregistrement des données : sauvegarde dans un fichier (Write)

	2 Index et Données
	2.1 Définitions et propriétés
	Unicité/spécificité
	Efficacité
	Compacité
	2.2 Utilisation

	3 Exemples d'indexation des données
	3.1 Adressage des tableaux
	3.2 Maintenance centralisée d'un index
	3.3 Indexation pseudo-aléatoire : les fonctions de hachage
	Exemple

	4 Généralisation : multi-indexation
	5 Structures de données pour l'indexation
	5.1 Liste triée
	5.2 Index bitmap
	5.3 Les B-arbres

