
2026/01/05 19:03 1/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Algorithmes sur les Textes

1 Données texte

1.1 Encodage des données

On distingue classiquement deux grandes catégories de données :

données quantitatives:
numérique entier ou réel, discrètes ou continues, bornées ou non. ex: poids, taille, âge,
taux d’alcoolémie,…
temporel : date, heure
numéraire
etc…

données qualitatives:
de type vrai/faux (données booléennes). ex: marié/non marié, majeur/non majeur
de type appartenance à une classe. ex: célibataire/marié/divorcé/veuf,
salarié/chômeur/retraité etc…
de type texte (autrement dit “chaine de caractères”). ex: nom, prénom, ville,…

D'un point de vue informatique, il n'existe pas de distinction entre le quantitatif et le
qualitatif. Tout est valeur numérique.

Une valeur numérique (digitale) consiste en:

un champ de bits (dont la longueur est exprimée en octets)
un processus de décodage : le format (ou type)

Les données manipulées par un programme:
sont codées sous un format binaire,
correspondant à un des types informatiques que vous connaissez déjà :

entier,
chaîne de caractères,
réel simple ou double précision etc…

ce qui implique en particulier :
une précision finie,
éventuellement des contraintes de place (le nom ou le prénom ne pouvant pas
dépasser n caractères, les entiers pouvant être choisis sur un intervalle fini etc…).

1.2 Codage des caractères

 char x;
 x = 'x';

x une variable de type caractère
'x' la valeur numérique (encodée):

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

Codage ASCII :
codage de symboles du clavier numérique.
Le nombre de symboles étant inférieur à 256, on le code sur un octet : 2⁸ (= 256)
valeurs différentes

Codage UTF-8 :
codage universel qui permet entre autre de coder les accents

Codage latin-1 (caractères latins étendus)
etc…

La table ASCII

Il existe différents encodages binaires possibles pour les caractères :

le code ASCII code les caractères du clavier anglais sur 7 bits, ce qui permet
d'interpréter chaque caractère comme un entier entre 0 et 127

ainsi :

char c = '/';
int code = (int) c;
System.out.println(code);

affiche la valeur 47 (le code ASCII du caractère '/')

voir aussi : java_type_character.wp

1.3 Codage des mots et du texte

Chaîne de caractère :

String s = "bonjour";

s est une variable
"bonjour" est une séquence de caractères

"chaîne" de caractères : type string en anglais
assimilable à un tableau de caractère :

https://wiki.centrale-med.fr/informatique/_detail/tc_info:capture_d_ecran_du_2025-04-23_10-37-41.png?id=tc_info%3A2020_cm_textes
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=9e391f&media=https%3A%2F%2Fkoor.fr%2FJava%2FTutorial%2Fjava_type_character.wp
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/05 19:03 3/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

for (char c : s.toCharArray()) {
 System.out.println(c);
 }

Affiche :

b
o
n
j
o
u
r

Le programme affiche les caractère 1 par 1, c’est une "chaîne" de plusieurs caractères individuels.

La norme UTF-8 encode les caractères sur un nombre d'octets variant entre 1 et
4. Il permet ainsi de coder un nombre de caractères considérablement plus
élevé.

Exemple : le smiley '�' appartient à la norme utf-8. Pour obtenir la valeur
entière correspondante :

String s = "�";
int code = s.codePointAt(0);
System.out.println(code);

On peut inversement afficher le caractère à partir de son code entier :

int code1 = 233;
int code2 = 119070;

char char1 = (char) code1;
String char2 = new String(Character.toChars(code2));

System.out.println(char1);
System.out.println(char2);

Donnée texte

Un texte, au même titre qu'un mot, est une chaîne de caractères (dont la longueur est définie par la
longueur de la séquence de caractères qui définissent le texte, ponctuations, espaces et caractères
de retour à la ligne compris).

Par définition les caractères séparateurs définissent la taille des espaces entre les mots, ainsi que les
passages à la ligne lors de l'affichage du texte.

Les caractères séparateurs

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+character
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

''

: caractère nul

' '

: un espace simple

'\t'

: tabulation

'\n'

: passage à la ligne ("retour chariot")

'\b'

: retour arrière ("backspace")

etc.

Codage du texte

L'ensemble des messages possibles peut être réduit à l'ensemble des entiers naturels. En effet,
chaque caractère d'un texte peut être traduit en entier en interprétant le code binaire correspondant
comme un entier.

Pour traduire une chaîne de caractères en entier, il faut "construire un nombre" à partir de chaque
caractère de la chaîne en prenant en compte sa position.

ainsi, dans le système décimal, la position du chiffre dans le nombre définit à quelle puissance
de 10 il appartient (unité, dizaines, centaines, etc…) Le chiffre le plus à gauche a la puissance la
plus élevée et celui le plus à droite la puissance la plus faible.
Si on suppose, pour simplifier, que chaque caractère est codé par un entier entre 0 et 255 (soit
le code ASCII "étendu"), alors toute séquence de caractères (de claviers européens) exprime un
nombre en base 256.

Un tel nombre s'appelle un "bytestring" ("chaine d'octets").
Il existe une fonction encode qui effectue une telle traduction

Exemple :

String s = "paul.poitevin@centrale-marseille.fr";

// Encodage de la chaîne en bytes en utilisant UTF-8
byte[] b = s.getBytes();

// Affichage des bytes encodés

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/05 19:03 5/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

for (byte byteValue : b) {
 System.out.print(byteValue + " ");
 }

ce qui affiche:

112 97 117 108 46 112 111 105 116 101 118 105 110 64 99 101 110 116 114 97
108 101 45 109 97 114 115 101 105 108 108 101 46 102 114

Un nombre en base 256 est difficile à lire et interpréter. On le traduit en base 10 :

// Conversion des bytes en BigInteger
BigInteger bigInteger = new BigInteger(b);

// Affichage du résultat
System.out.println("i = " + bigInteger);

Ce qui donne :

i =
8528065861149768815100567784717691806974718591507288012415052936271731682296
24211058

1.4 Textes et bases de textes

Bases de textes : ensemble constitué de plusieurs textes
Bases de documents,

Dossiers contenant des documents
Collections de livres (électroniques)
→ 10 - 10⁴

Contenus en ligne (descriptifs de films, articles de journaux, descriptifs de produits.)
→ 10⁵ - 10⁶

Ensemble du web (les pages web, en tant que telles, peuvent être considérées comme du
texte mis en forme par du html).

→ 10⁹
Messageries, Blogs, Forums :

10³ - 10⁶

Problématiques de la recherche de texte :

temps de réponse des algorithmes :
l’utilisateur classique veut attendre moins de 2 à 3 secondes.
Sur des bases extrêmement grandes (type recherche web), il faut donc être très
performant pour atteindre ces temps de réponses.

Stockage des données :
intégralité des textes ou simple descriptif/résumé?
Les moteurs de recherche par exemple ne stockent aucune page web, ils ne stockent que
des index et des références.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+biginteger
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+biginteger
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

Remarque :

Un document texte pourra être décrit soit comme :

une séquence de caractères (lettres)
une séquence de termes (mots)

2 Recherche dans les textes

Exemples :

→ Recherche d’un terme : “artichaud”
→ Recherche d’un motif (expression régulière) : une adresse email, une URL, un expéditeur, un
numéro tel

2.1 Rechercher un terme

Recherche simple

d : document de taille m On cherche un algorithme qui retourne toutes les occurrences (position dans
le doc) d’un certain terme t (de taille k<m)

t = "ami"

d :

"Les amis de mes amis sont mes amis."
 ^ ^ ^
 4 16 30

→ La position de la première occurrence du terme t :
→ Les positions de toutes les occurrences du terme t :
Complexité : $O(m \times k)$

on note d le texte et t le motif recherché dans le texte

Algo : recherche_simple
Données : d, t : chaînes de caractères
Début
 n = len (d)
 m = len (t)
 i <-- 0
 tant que i < n - m:
 j <-- 0
 tant que j < m et d[i+j] = t[j] :
 j += 1
 si j == m :
 retourner i

2026/01/05 19:03 7/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 sinon :
 i <-- i + 1
Fin

Remarque : Il peut être nécessaire de vérifier que le terme est précédé et suivi par les caractères
d’espacement pour éviter de détecter les mots dont le mot recherché est préfixe ou suffixe.

Cette approche a un inconvénient : après une comparaison infructueuse, la comparaison suivante
débutera à la position i + 1, sans tenir aucun compte de celles qui ont déjà eu lieu à l'itération
précédente, à la position i.

Algorithme de Boyer-Moore

L'algorithme de Boyer-Moore examine d'abord la chaîne t et en déduit des informations permettant
de ne pas comparer chaque caractère plus d'une fois.

On suppose qu'on peut tester si un caractère c appartient au motif t en temps constant
Le but est de calculer un décalage permettant de ne pas inspecter les positions où il n'y a
aucune chance de trouver le motif t.
On commence par chercher la position i = m - 1
Soit c = d[i] le dernier caractère
Si c n'est pas dans t, le décalage vaut m
Sinon on note k la position de la dernière occurrence de c dans t

si k vaut m-1 (dernier caractère), le décalage vaut m
Sinon le décalage est égal à m - 1 - k

Exemple

RECHERCHE DE CHAINES CODEES EN MACHINE
CHINE
 CHINE
 CHINE
 CHINE
 CHINE
 CHINE
 CHINE
 CHINE
 CHINE
RECHERCHE DE CHAINES CODEES EN MACHINE

2.2 Compter les mots

Lecture séquentielle des caractères :

"Les amis de mes amis sont mes amis."
 ^
 position initiale de la tête de lecture

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

Il ne faut compter que les debuts de mots
Un début de mot est un caractère alphanumérique :

{a,à,ä,b,c,ç,d,e,é,è,ê,ë,...,z,A,B,C,...,Z,1,2,3,...,0}

Tout ce qui n'est pas alphanumérique est un caractère séparateur

{!,#,$,%,&,",',...}

Autrement dit on compte les couples (caractère séparateur, caractère alphanumérique)
remarque : le début de chaîne compte comme un caractère séparateur

remarque : pour extraire la liste des mots présents dans le texte, on doit identifier les débuts et les
fins de mots :

un début de mot est un couple (sep., alphanum.)
une fin de mot est un couple (alphanum., sep.)

Algo : compte-mots
Données :
 - d : chaîne de caractères
Début:
nb_mots <-- 0
sep <-- Vrai
pour tout c dans d:
 si sep est Vrai et c est alphanumérique:
 sep <-- Faux
 nb_mots <-- nb_mots + 1
 sinon si sep est Faux et c est séparateur:
 sep <-- Vrai
retourner nb_mots
Fin

Code équivalent : compter les mots à l'aide d'un automate fini:

def compte_mots(d):
 state = 0
 cpt = 0
 for i in range(len(d)):
 if state == 0 and is_alpha(d[i]):
 state = 1
 cpt += 1
 if state == 1 and is_sep(d[i]):
 state = 0
 return cpt

Présentation: un automate fini décrit les différentes étapes d'un calcul sous la forme d'un graphe
orienté.

les sommets du graphe sont les états. Un état identifie une étape de calcul. L'ensemble des

https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:automate-s5-1.png?id=tc_info%3A2020_cm_textes

2026/01/05 19:03 9/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

états représente la mémoire (finie) de l'automate. Il existe un état initial, qui est celui dans
lequel l'automate démarre au début du calcul.
les arêtes représentent les transitions d'état. Un transition correspond à l'exécution d'un calcul
élémentaire.

Pour réaliser des calculs, on a besoin d'opérandes. Les opérandes sont lus séquentiellement en entrée
de l'automate. Ils obéissent à un certain alphabet (ou ensemble de symboles, …) Σ.

Enfin, des résultats de calcul sont produits en sortie de l'automate.

Plus concrètement, à chaque symbole lu en entrée, l'automate consulte une table des symboles
acceptés à partir de l'état courant. Si le symbole est accepté, l'automate effectue la transition d'état,
et produit une sortie (par exemple incrémenter le compteur de mots). Dans le cas contraire, il
s'arrête.

Définition:

Un automate fini est défini par :

un alphabet d'entrée Σ (symboles acceptés)
un alphabet de sortie Σ'
un ensemble (fini) de sommets : S
un ensemble fini d'arêtes : $A : S \times \Sigma \rightarrow S \times \Sigma'$ qui a tout couple
(état, symbole d'entrée) associe un couple (état, symbole de sortie)
un état initial $s_0 \in S$

L'état initial et la séquence des symboles lus définit la séquence de symboles produits en sortie (le
résultat du calcul)

Exemple : un automate qui effectue l'addition binaire:

$\Sigma = \{0, 1\}²$
$\Sigma' = \{0, 1\}$
$S = \{1, 2\}$
$s_0 = 1$

https://wiki.centrale-med.fr/informatique/_detail/tc_info:addition_binaire.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

La famille des automates finis définit une classe de calculs (l'ensemble des calculs réalisables par des
automates finis):

séquences
boucles et branchements conditionnels

Mais pas :

appels récursifs

remarque: il existe des automates de calcul plus puissants :

automates à piles (calcul récursif)
machines de Turing et machines de Turing universelles (calcul sur des automates)

permettant d'implémenter des calculs plus complexes

2.3 Recherche de motifs et expressions régulières

De manière plus générale recherche d’expressions peut être effectuée à l’aide d’automates finis non
déterministes.

Parmi les états on distingue les états initiaux et terminaux.
Il existe (parfois) plusieurs transitions possibles pour un même symbole lu
Lorsque l'automate s'arrête, on regarde si l'état est terminal. S'il est terminal, le mot est
accepté (autrement dit le motif est "reconnu")

Remarque : pour tout automate fini non déterministe A, il existe un automate fini déterministe A′ qui
reconnait le même langage (plus compliqué à écrire).

Représentation graphique :

les états dans des cercles,
l’unique état initial par une flèche pointant sur un état,
les états terminaux par un double cercle concentrique sur l’état.
Les transitions d’état quant à elles sont représentées par une flèche allant de l’état de départ
jusqu’à l’état d’arrivée indexée par le caractère (ou le groupe de caractères) autorisant la
transition.

Lecture séquentielle des caractères :

"Les amis de mes amis sont mes amis."
 ^
 position initiale de la tête de lecture

Exemple : mots se terminant par ab

$\Sigma = \{a, b\}$

L'automate doit reconnaître les mots suivants :

2026/01/05 19:03 11/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

ab
bab
abab
bbab
aabab
abbab
babab
bbbab
aaabab
etc..

https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate_non_deterministe.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

Pour aller plus loin : Cours5.html

Exemples:

Reconnaître un nombre entier : +4, -455, 1024, 0

Reconnaître un nombre réel :
TODO

Remarques :

Les classes d'expressions qui peuvent être reconnues par un automate fini sont appelées des
expressions régulières
En python, les expressions régulières s'expriment à l'aide d'une syntaxe spécifique à l'aide de la
librairie re
Les expressions régulières (regex) servent à décrire des motifs complexes à chercher
("marcher") dans les chaînes de caractères.

Traduction de l'automate non déterministe précédent sous forme d'expression régulière :

[ab]*ab

Remarque : les langages qui peuvent être reconnus par des expressions régulières sont appelés les
langages réguliers.

Exemples de langages non réguliers:

reconnaître les palindromes
reconnaître une expression arithmétique
vérifier la syntaxe d'un code informatique

Syntaxe des expressions régulières Python

Définition : Il s’agit d’une syntaxe “condensée” de description d’automates finis permettant de
reconnaître des motifs dans un texte.

En Python, les expressions régulières sont implémentées dans la librairie re

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=6e440c&media=https%3A%2F%2Fpages.lip6.fr%2FJean-Francois.Perrot%2Finalco%2FAutomates%2FCours5.html
https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate-s5-2-alt.png?id=tc_info%3A2020_cm_textes

2026/01/05 19:03 13/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

import re

d = "Les astronautes de la mission Gemini 8 sont désignés le 20 septembre
1965 : Armstrong est le commandant et David Scott le pilote. Ce dernier est
le premier membre du groupe d'astronautes à recevoir une place dans
l'équipage titulaire d'une mission spatiale. La mission est lancée le 16
mars 1966. Celle-ci est la plus complexe réalisée jusque-là, avec un rendez-
vous et un amarrage du vaisseau Gemini avec l'étage de fusée Agena et une
activité extravéhiculaire (EVA) qui constitue la deuxième sortie américaine
et la troisième en tout, réalisée par Scott. La mission doit durer 75 heures
et le vaisseau doit effectuer 55 orbites. Après le lancement de l'étage-
cible Agena à 15 h 00 UTC, la fusée Titan II GLV transportant Armstrong et
Scott décolle à 16 h 41 UTC. Une fois en orbite, la poursuite de l'étage
Agena par le vaisseau Gemini 8 s'engage."

liste_termes = re.findall(r"([1-9]\d*|0)", d)

Transitions : caractères et groupes de caractères

a : le caractère a
[ab] : le caractère a ou le caractère b
[a-z] : n'importe quel caractère minuscule entre a et z
[^a] : n'importe quel caractère sauf le caractère a
: le caractère espace
\n : le caractère "passage à la ligne"
. : n'importe quel caractère
\. : le caractère "." uniquement
[1-9] : un chiffre entre 1 et 9
\w : n'importe quel caractère alphanumérique
\s : n'importe quel caractère d'espacement
\d : n'importe quel chiffre

Def : une expression est définie comme une suite de transition. Le mot est accepté lorsque la suite de
transitions est respectée

Exemple :

r"chal[eu]t"

accepte chalet et chalut

r"\w\w\w"

accepte tous les mots de 3 lettres

Branchements et itération

Les parenthèses permettent :
de factoriser une expression (qui peut alors être traitée comme une transition)

(artichaud)

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

de définir des branchements (Union):
(chien|chat)

* : le caractère ou l'expression précédente répété entre 0 et n fois
+ : le caractère ou l'expression précédente répété entre 1 et n fois
? : le caractère ou l'expression précédente répété entre 0 et 1 fois

Récapitulatif

1. Caractères littéraux :

Les caractères alphabétiques et numériques sont traités littéralement. Par
exemple, le motif "abc" correspond à la chaîne "abc".

2. Caractères spéciaux :

Certains caractères ont une signification spéciale dans une expression régulière
et doivent être échappés s'ils doivent être traités littéralement. Ces caractères
spéciaux incluent . ^ $ * + ? { } [] \ | ().

3. Classes de caractères :

[abc] : Correspond à un caractère qui est soit a, b ou c.
[^abc] : Correspond à un caractère qui n'est pas a, b ou c.
[a-z] : Correspond à un caractère alphabétique en minuscules.
[A-Z] : Correspond à un caractère alphabétique en majuscules.
[0-9] : Correspond à un chiffre.

4. Caractères génériques :

. : Correspond à n'importe quel caractère sauf une nouvelle ligne.
\d : Correspond à un chiffre (équivalent à [0-9]).
\D : Correspond à un caractère qui n'est pas un chiffre.
\w : Correspond à un caractère alphanumérique (équivalent à [a-zA-Z0-9_]).
\W : Correspond à un caractère qui n'est pas alphanumérique.

5. Quantificateurs :

* : Correspond à zéro ou plusieurs occurrences du caractère précédent.
+ : Correspond à une ou plusieurs occurrences du caractère précédent.
? : Correspond à zéro ou une occurrence du caractère précédent.
{n} : Correspond exactement à n occurrences du caractère précédent.
{n,} : Correspond à au moins n occurrences du caractère précédent.
{n,m} : Correspond à entre n et m occurrences du caractère précédent.

6. Ancrages :

^ : Correspond au début de la chaîne.
$: Correspond à la fin de la chaîne.

7. Groupes et Alternatives :

() : Crée un groupe. Par exemple, (abc)+ correspond à une ou plusieurs

2026/01/05 19:03 15/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

occurrences de "abc".
| : Représente une alternative (ou). Par exemple, a|b correspond à "a" ou "b".

8. Échappement :

\ : Permet d'échapper un caractère spécial pour le traiter littéralement. Par
exemple, \\ correspond à un seul backslash.

exemples

reconnaître une adresse mail :

 r'\w[\.\w\-]*\w@\w[\.\w\-]*\.\w\w\w?'

3 Complétion / Correction

Un algorithme de complétion est un mécanisme logique permettant d'anticiper la saisie et de
proposer des mots automatiquement pour faciliter les recherches dans un formulaire sur une page
web par exemple.

On utilise pour cela une structure de données arborescente, où chaque nœud de l'arbre est une étape
de lecture et chaque arête correspond à la lecture d'une lettre. Les nœuds sont indexés par les lettres
suivantes possibles du mot, avec un compteur par nœud pour savoir si celui-ci est final ou non (le
nœud est final si le compteur est >0).

On commence par construire un arbre de complétion à partir de mots de vocabulaire,

V = {art, arbre, des, dessin}

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

L'arbre construit de cette manière est très large mais peu profond :

Pour chaque nœud, le nombre de fils est de l'ordre de la taille de l'alphabet utilisé
La hauteur maximale est celle de la taille maximale des mots de vocabulaire n_{max}
Par construction, le nombre d'arêtes est borné par $|V|\times n_{max}$

Une fois l'arbre construit, on l'utilise pour compléter un début de mot proposé par l'utilisateur
(souvent plusieurs complétions possibles).

Exemple :

début de mot : ar
complétions possibles : {art, arbre}

Autre exemple:

https://wiki.centrale-med.fr/informatique/_detail/tc_info:arbre_completion.png?id=tc_info%3A2020_cm_textes

2026/01/05 19:03 17/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

4 Comparaison/appariement de textes

On cherche à exprimer une distance entre deux chaînes de caractères. Une distance entre 2 textes d1
et d2 est telle que :

dist(d1,d2) = dist(d2,d1)
dist(d1,d2) ≥ 0
dist(d1,d2) + dist(d2,d3) ≥ dist(d1,d3)

Distance de Hamming

La distance de Hamming entre deux chaînes de même taille est définie comme le nombre de
caractères non appariés. Ainsi la distance de Hamming entre "passoire" et "pastèque" est égale à 4.

Exemple :

p a s s o i r e
| | | x x x x |
p a s t e q u e

distance = 4

Peut-on généraliser cette distance à des chaînes de taille différente?

Distance d'édition

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=f68f4b&media=https%3A%2F%2Falgo.developpez.com%2Fimages%2Ffaq%2FStructuresArborescentes%2Farbre_patricia.png

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

La distance d’édition est définie, pour deux chaînes de longueur quelconque, comme le nombre
minimal d’opérations permettent de transformer d1 en d2, avec les opérations suivantes :

ins(a) ⇢ insertion du caractère a
perm (a, b) ⇢ remplacement de a par b
del (a) ⇢ suppression du caractère a

Il existe différentes manières de transformer la chaîne d1 en d2. On peut par exemple supprimer tous
les caractères de d1 et insérer tous les caractères de d2, mais c'est rarement le nombre d'opérations
optimal (|d1|+|d2|).

Exemples:1.
distance entre "robe", "arbre", et "porte".

 - r o b - e
 v | ^ | v |
 a r - b r e

dist = 3

 r o b - e
 x | x v |
 p o r t e

dist = 3

 a - r b r e
 x v | x ^ |
 p o r t - e

dist = 4

Calcul complet cloche/hochet

La résolution de ce problème repose sur les principes de la programmation dynamique.

Un problème d'optimisation combinatoire se caractérise par :

un problème
un ensemble de solutions à ce problème
une fonction de coût (ou une fonction objectif) qui attribue un coût (resp un gain) à chacune des
solutions possibles apportées au problème

Le nombre de solutions possibles à un problème d'optimisation combinatoire croît exponentielleemnt
avec la taille du problème. Trouver une solution par énumération à un tel problème devient
rapidement impossible pour des problèmes de taille modérée.

Certains problèmes d'OC peuvent être résolus selon le principe de la programmation dynamique
qui consiste à décomposer le problème en sous-problèmes (et en sous-solutions):

soit un problème P présentant une solution S de coût C

2026/01/05 19:03 19/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Étant donné un sous problème $p \subset P$,
on liste l'ensemble des sous-solutions s, s', s'' applicables à p
et on sélectionne celle dont le coût est le plus faible

on modifie S selon la sous-solution sélectionnée
on met à jour le coût global
on met à jour le sous-problème
et on recommence jusqu'à la convergence (p = P)

Dans le cas de l'appariement de chaîne:

une solution est un ensemble de transformations acceptables pour passer de la chaîne A à la
chaîne B
le coût est la somme des coûts des transformations appliquées
un sous-problème consiste à apparier un morceau de A avec un morceau de B

En pratique:

on représente l’ensemble des transformations de d1 vers d2 sous la forme d’un tableau de (m
+ 1) lignes et (n + 1) colonnes, avec m = |d1| et n = |d2|
pour chaque case (i,j) du tableau,

le passage vers la case (i, j+1) correspond à ins(d2[j])
le passage vers la case (i+1, j) correspond à del(d1[i])
le passage vers la case (i+1, j+1) correspond à perm(d1[i],d2[j]) ou id(d1[i],d2[j]) si
d1[i]=d2[j]

la valeur de la distance au niveau de la case (i,j) est égale au minimum de :
1 + dist(i, j+1)
1 + dist(i+1, j)
dist(i+1, j+1) si d1[i]=d2[j], ou 1 + dist(i+1, j+1) sinon

la distance au niveau de la case (m,n) vaut 0
la distance d'édition est donnée par la valeur dans la case (0,0)

Algorithme

Préparation

variables globales : d1, d2 : chaînes de caractères
m = |d1|
n = |d2|

Récursif!!

algo : distance
données :
 i, j : etape de calcul
début
 si i = m et j = n :
 retourner 0
 sinon si i = m :

https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:td3-alignement.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

 retourner dist(i, j+1) + 1
 sinon si j = n :
 retourner dist(i + 1, j) + 1
 sinon si d1[i] = d2[j] :
 retourner min(dist(i, j+1) + 1, dist(i + 1, j) + 1, dist(i + 1, j + 1))
 sinon
 retourner min(dist(i, j+1) + 1, dist(i + 1, j) + 1, dist(i + 1, j + 1)
+ 1)
fin

Alignement glouton

5. Modèles génératifs (Hors programme)

Soit un document d :

constitué de T symboles $d[1]$, …, $d[i]$, ….
appartenant à l'alphabet $A = \{\alpha_1,...,\alpha_K\}$ constitué de K symboles.

Une description statistique d’un texte correspond à un histogramme qui porte sur un ensemble de
symboles :

https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:alignement_glouton.png?id=tc_info%3A2020_cm_textes

2026/01/05 19:03 21/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Modèles probabiliste : la suite de symbole observés (le message) est générée par un
processus aléatoire: $d = (d_1, d_2, ..., d_T$)

chaque d_i est la réalisation d'un tirage aléatoire
obéissant à une distribution de probabilité p

Les symboles sont au choix :

des caractères appartenant à un alphabet
des termes appartenant à un vocabulaire

5.1 Modèles probabilistes

Les modèles probabilistes interprètent les données de type texte comme étant générées par une
distribution de probabilité P inconnue.

La distribution P définit le langage utilisé dans le texte. On ne s'intéresse pas au sens du message,
on regarde seulement comment les symboles se répartissent dans les documents, leurs fréquences
d'apparition, les régularités, …

https://wiki.centrale-med.fr/informatique/_detail/restricted:text_mining.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

Fréquence d'un symbole

Soit $\alpha \in A$ un symbole de l'alphabet. On note $P(X=\alpha)$ la fréquence d'apparition de ce
symbole dans le langage \mathcal{L} considéré.

On a par définition~: $$\sum_{\alpha \in V} P(X=\alpha) = 1$$

Exemple: $$\boldsymbol{p}_\text{Français} = (0.0942, 0.0102, 0.0264, 0.0339,
0.01587, 0.095, 0.0104, 0.0077, 0.0841, 0.0089, ...)$$ où

$p_1 = 0.0942$ est la fréquence de la lettre 'A',
$p_2 = 0.0102$ est la fréquence d'apparition de la lettre 'B'
etc.

Probabilité jointe

On s'intéresse maintenant aux fréquence d'apparition de couples de lettre successives.

Soient α et β deux symboles de l'alphabet.

Les séquences de deux caractères sont classiquement appelées des bigrammes.
On définit de même les trigrammes comme les séquences de trois caractères
etc.

On notera $\boldsymbol{P}_\mathcal{L}$ la matrice des fréquences des bigrammes dans un langage
\mathcal{L} donné, où P_{ij} donne la fréquence du bigramme (α_i,α_j).

Exemple: $$\boldsymbol{P}_\text{Français} = 10^{-5} \times \left(
\begin{array}{cccc} 1.5 & 116.8 & 199.1 & ...\\ 62.8 & 1.6 & 0.14 & ...\\ 184.8 & 0 &
52.4 & ...\\ &...&&& \end{array} \right)$$

où

$P_{11} = 1.5 \times 10^{-5}$ est la fréquence du bigramme 'AA',
$P_{12} = 116.8 \times 10^{-5}$ est la fréquence d'apparition du bigramme
'AB'
etc.

avec bien sûr : $$\sum_{(i,j) \in \{1,...,K\}^2} P_{ij}=1$$

voir comptage des bigrammes en français

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=06b63e&media=http%3A%2F%2Fwww.nymphomath.ch%2Fcrypto%2Fstat%2Ffrancais.html

2026/01/05 19:03 23/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

La probabilité conditionnelle du caractère β étant donné le caractère précédent α
est définie comme :

$$P(Y = \beta | X=\alpha) = \frac{|\xi \in \Xi : (X,Y)=(\alpha,\beta)|}{|\xi \in \Xi : X = \alpha|}$$

Soit en français :

$$ M_\text{Français} = \left(\begin{array}{cccc} 0.0016 & 0.0124 & 0.0211 & ...\\
0.0615 & 0.0016 & 0.0001 & ...\\ 0.0700 & 0.0000 & 0.0198 & ...\\ & ... &&&
\end{array} \right) $$ où :

M_{11} est la probabilité de voir un 'A' suivre un 'A'
M_{12} est la probabilité de voir un 'B' suivre un 'A'
etc.

La matrice des probabilités conditionnelles M permet de définir un modèle
génératif de langage inspiré des processus aléatoires de Markov:

La production d'un mot ou d'un texte est modélisée comme un parcours
aléatoire sur une chaîne de Markov définie par la matrice de transitions M.
La fréquence d'apparition des lettres est modélisée comme la mesure
stationnaire de la chaîne de Markov, autrement dit le vecteur de probabilité
vérifiant : $$ \boldsymbol{p} = \boldsymbol{p} M$$

https://wiki.centrale-med.fr/informatique/_detail/public:omi-5a-o-rech:proba_condi.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

On peutétendre ce principe à la distribution des mots dans les textes, ce qui permet de produire des
modèles génératifs de langage.

Exemple : le pseudo latin ("Lorem Ipsum") : www.lipsum.com
Exemple de pseudo-français (Utilisant une trace (mémoire) de 1 mot):

j'ai vu parfois des yeux, remonter vers toi bien fatiguée! n'est pas un appel de la terre–
je hume à coups mutins les voiles la blafarde lumière puisée au delà les vieux flacon
débouché rien ne puis la pourriture les forêts ou bien que vénus par des choses dans
les forts des senteurs confondues de ma chère, prêtre orgueilleux danse
amoureusement l'éphémère ébloui par ses couleurs du haut qu'avec effroi dans sa
beauté où je puis, sans remord un fleuve invisible d'un rayon frais n'éclaira vos
banquiers un parfait d'une girouette ou décor suborneur ce temps! n'est plus ma
carcasse superbe pyrrhus auprès d'un ange enivré du souvenir pour moi même dans
le tortu, il fée, dévotes et mange retrouve jamais enfanté au poète– cependant de
minéraux charmants, horreur, plus t'enfourcher! folle, si bien loin des laves les amants
nous lançant son sein palpitant les blessés ou sirène qu'importé le coin du vin des
jongleurs sacrés au loin de ton bétail, embusqué, et ton juge que ce globe entier dans
les temps et d'un mouvement qui m'accable sur moi hurlait longue misère toi sans
pitié de pleurs aboutit dans l'or et ne vibre que le soleil d'un chemin bourbeux croyant
par votre corps brûlé par mille labyrinthes c'est un etre maudit soit actif ou de l'antre
taciturne je le regard m'a déjà flaire peut être n'importe où les vrais rois pour le frais
n'éclaira vos riches cités dans son coeur racorni,

5.2 Espaces de plongement (Word embedding)

Le plongement des mots (word embedding)

est une technique en traitement automatique du langage naturel (TALN)
qui consiste à représenter les mots sous forme de vecteurs de nombres réels dans un

https://wiki.centrale-med.fr/informatique/_detail/public:omi-5a-o-rech:markov-fr.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a92c67&media=https%3A%2F%2Fwww.lipsum.com%2F

2026/01/05 19:03 25/26 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

espace vectoriel.
L'idée est :

de projeter les mots dans cet espace vectoriel
où la proximité spatiale entre les vecteurs reflète la sémantique des mots.

Largement utilisés dans diverses tâches de traitement du langage naturel:

classification de texte,1.
la traduction automatique,2.
l'analyse des sentiments,3.
la recherche d'information, etc4.

Word2Vec est un algorithme d'apprentissage de représentations de mots (embeddings) développé
par Tomas Mikolov et son équipe chez Google en 2013.

L'idée fondamentale est que les mots ayant des contextes similaires ont tendance à avoir des
significations similaires.
Word2Vec utilise des modèles de prédictions pour apprendre des représentations vectorielles
en analysant les contextes d'occurrence des mots dans un corpus de texte.

Il existe deux architectures principales de Word2Vec : Skip-Gram et CBOW

1. Skip-Gram

Dans l'approche Skip-Gram, le modèle tente de prédire les mots environnants (contexte) à partir d'un
mot donné (mot central). Le processus d'apprentissage consiste à maximiser la probabilité d'observer
les contextes donnés un mot central :

\[\max \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log P(w_{t+j} \mid w_t) \]

où \(T\) est la taille du corpus, \(w_t\) est le mot central, \(w_{t+j}\) est le mot contexte, et \(c\) est la
taille de la fenêtre contextuelle.

2. CBOW (Continuous Bag of Words)

Dans l'approche CBOW, le modèle tente de prédire le mot central à partir des mots contextuels
(contexte). Le processus d'apprentissage consiste à maximiser la probabilité d'observer le mot central
étant donnés les contextes:

\[\max \sum_{t=1}^{T} \log P(w_t \mid w_{t-c}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+c}) \]

où \(T\) est la taille du corpus, \(w_t\) est le mot central, et \(w_{t-i}\) sont les mots contextuels dans
la fenêtre de contexte.

Fonctionnement Général

Last update: 2025/04/23 10:59 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/05 19:03

Le processus d'apprentissage dans Word2Vec implique la création d'une matrice de co-occurrence, où
chaque entrée représente la fréquence ou la probabilité d'occurrence conjointe de deux mots. À partir
de cette matrice, le modèle ajuste les vecteurs de mots de manière itérative pour maximiser la
probabilité d'observation du contexte étant donné le mot central.

Une fois l'apprentissage terminé, les vecteurs de mots obtenus (les embeddings) capturent les
relations sémantiques entre les mots dans l'espace vectoriel. Des mots similaires seront représentés
par des vecteurs similaires, ce qui permet d'effectuer des opérations algébriques intéressantes telles
que \(\text{"roi"} - \text{"homme"} + \text{"femme"} \approx \text{"reine"} \).

Word2Vec a été révolutionnaire en raison de sa capacité à apprendre des représentations de mots
utiles à partir de grands volumes de texte non annoté, et ses embeddings sont souvent utilisés
comme points de départ pour de nombreuses tâches de traitement du langage naturel (NLP) et
d'apprentissage automatique.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

Last update: 2025/04/23 10:59

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes

	[Algorithmes sur les Textes]
	Algorithmes sur les Textes
	1 Données texte
	1.1 Encodage des données
	1.2 Codage des caractères
	1.3 Codage des mots et du texte
	1.4 Textes et bases de textes
	Problématiques de la recherche de texte :
	Remarque :

	2 Recherche dans les textes
	Exemples :
	2.1 Rechercher un terme
	2.2 Compter les mots
	2.3 Recherche de motifs et expressions régulières
	Syntaxe des expressions régulières Python
	Transitions : caractères et groupes de caractères
	exemples

	3 Complétion / Correction
	4 Comparaison/appariement de textes
	Distance de Hamming
	Distance d'édition
	Calcul complet cloche/hochet
	Algorithme
	Alignement glouton

	5. Modèles génératifs (Hors programme)
	5.1 Modèles probabilistes
	Fréquence d'un symbole
	Probabilité jointe
	5.2 Espaces de plongement (Word embedding)
	1. Skip-Gram
	2. CBOW (Continuous Bag of Words)
	Fonctionnement Général

