
2026/01/11 04:51 1/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Algorithmes sur les Textes

1 Données texte

1.1 Encodage des données

On distingue classiquement deux grandes catégories de données :

données quantitatives:
numérique entier ou réel, discrètes ou continues, bornées ou non. ex: poids, taille, âge,
taux d’alcoolémie,…
temporel : date, heure
numéraire
etc…

données qualitatives:
de type vrai/faux (données booléennes). ex: marié/non marié, majeur/non majeur
de type appartenance à une classe. ex: célibataire/marié/divorcé/veuf,
salarié/chômeur/retraité etc…
de type texte (autrement dit “chaine de caractères”). ex: nom, prénom, ville,…

D'un point de vue informatique, il n'existe pas de distinction entre le quantitatif et le
qualitatif. Tout est valeur numérique.

Une valeur numérique (digitale) consiste en:

un champ de bits (dont la longueur est exprimée en octets)
un processus de décodage : le format (ou type)

Les données manipulées par un programme:
sont codées sous un format binaire,
correspondant à un des types informatiques que vous connaissez déjà :

entier,
chaîne de caractères,
réel simple ou double précision etc…

ce qui implique en particulier :
une précision finie,
éventuellement des contraintes de place (le nom ou le prénom ne pouvant pas
dépasser n caractères, les entiers pouvant être choisis sur un intervalle fini etc…).

1.2 Codage des caractères

 char x;
 x = 'x';

x une variable de type caractère
'x' la valeur numérique (encodé):

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

Codage ASCII :
codage de symboles du clavier numérique.
Le nombre de symboles étant inférieur à 256, on le code sur un octet : 2⁸ (= 256)
valeurs différentes

Codage UTF-8 :
codage universel qui permet entre autre de coder les accents

Codage latin-1 (caractères latins étendus)
etc…

La table ASCII

Il existe différents encodages binaires possibles pour les caractères :

le code ASCII code les caractères du clavier anglais sur 7 bits, ce qui permet
d'interpréter chaque caractère comme un entier entre 0 et 127

ainsi :

char c = '/';
int code = (int) c;
System.out.println(code);

affiche la valeur 47 (le code ASCII du caractère '/')

voir aussi : java_type_character.wp

1.3 Codage des mots et du texte

Chaîne de caractère :

String s = "bonjour";

s est une variable
"bonjour" est une séquence de caractères

"chaîne" de caractères : type string en anglais
assimilable à un tableau de caractère :

https://wiki.centrale-med.fr/informatique/_detail/tc_info:capture_d_ecran_du_2025-04-23_10-37-41.png?id=tc_info%3A2020_cm_textes
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=9e391f&media=https%3A%2F%2Fkoor.fr%2FJava%2FTutorial%2Fjava_type_character.wp
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/11 04:51 3/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

for (char c : s.toCharArray()) {
 System.out.println(c);
 }

Affiche :

b
o
n
j
o
u
r

Le programme affiche les caractère 1 par 1, c’est une "chaîne" de plusieurs caractères individuels.

La norme UTF-8 encode les caractères sur un nombre d'octets variant entre 1 et
4. Il permet ainsi de coder un nombre de caractères considérablement plus
élevé.

Exemple : le smiley '�' appartient à la norme utf-8. Pour obtenir la valeur
entière correspondante :

String s = "�";
int code = s.codePointAt(0);
System.out.println(code);

On peut inversement afficher le caractère à partir de son code entier :

int code1 = 233;
int code2 = 119070;

char char1 = (char) code1;
String char2 = new String(Character.toChars(code2));

System.out.println(char1);
System.out.println(char2);

Donnée texte

Un texte, au même titre qu'un mot, est une chaîne de caractères (dont la longueur est définie par la
longueur de la séquence de caractères qui définissent le texte, ponctuations, espaces et caractères
de retour à la ligne compris).

Les caractères séparateurs

Par définition les caractères séparateurs définissent la taille des espaces entre les
mots, ainsi que les passages à la ligne lors de l'affichage du texte.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+character
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

: caractère nul * ' ' : un espace simple * '\t' : tabulation * '\n'
: passage à la ligne ("retour chariot") * '\b' : retour arrière
("backspace") * etc. </note> Codage du texte L'ensemble des
messages possibles peut être réduit à l'ensemble des entiers
naturels. En effet, chaque caractère d'un texte peut être
traduit en entier en interprétant le code binaire
correspondant comme un entier. Pour traduire une chaîne de
caractères en entier, il faut "construire un nombre" à
partir de chaque caractère de la chaîne en prenant en compte
sa position. * ainsi, dans le système décimal, la position
du chiffre dans le nombre définit à quelle puissance de 10
il appartient (unité, dizaines, centaines, etc…) Le chiffre
le plus à gauche a la puissance la plus élevée et celui le
plus à droite la puissance la plus faible. * Si on suppose,
pour simplifier, que chaque caractère est codé par un entier
entre 0 et 255 (soit le code ASCII "étendu"), alors toute
séquence de caractères (de claviers européens) exprime un
nombre en base 256. * Un tel nombre s'appelle un
"bytestring" ("chaine d'octets"). * Il existe une fonction
encode qui effectue une telle traduction * Exemple : <code
java> String s = "paul.poitevin@centrale-marseille.fr";
Encodage de la chaîne en bytes en utilisant UTF-8 byte[] b =
s.getBytes(); Affichage des bytes encodés for (byte
byteValue : b) { System.out.print(byteValue + " "); }
</code> ce qui affiche: <code> 112 97 117 108 46 112 111 105
116 101 118 105 110 64 99 101 110 116 114 97 108 101 45 109
97 114 115 101 105 108 108 101 46 102 114 </code> Un nombre
en base 256 est difficile à lire et interpréter. On le
traduit en base 10 : <code java> Conversion des bytes en
BigInteger BigInteger bigInteger = new BigInteger(b);
Affichage du résultat System.out.println("i = " +
bigInteger); </code> Ce qui donne : <code> i =
852806586114976881510056778471769180697471859150728801241505
293627173168229624211058 </code> === 1.4 Textes et bases de
textes === * Bases de textes : ensemble constitué de
plusieurs textes * Bases de documents, * Dossiers contenant
des documents * Collections de livres (électroniques) * → 10
- 10⁴ * Contenus en ligne (descriptifs de films, articles de
journaux, descriptifs de produits.) * → 10⁵ - 10⁶ * Ensemble
du web (les pages web, en tant que telles, peuvent être
considérées comme du texte mis en forme par du html). * →
10⁹ * Messageries, Blogs, Forums : * 10³ - 10⁶
==Problématiques de la recherche de texte :== * temps de
réponse des algorithmes : * l’utilisateur classique veut
attendre moins de 2 à 3 secondes. * Sur des bases
extrêmement grandes (type recherche web), il faut donc être
très performant pour atteindre ces temps de réponses. *
Stockage des données : * intégralité des textes ou simple
descriptif/résumé? * Les moteurs de recherche par exemple ne
stockent aucune page web, ils ne stockent que des index et
des références. ==Remarque :== Un document texte pourra être

2026/01/11 04:51 5/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

décrit soit comme : * une séquence de caractères (lettres) *
une séquence de termes (mots) ==== 2 Recherche dans les
textes ==== ==Exemples :== * → Recherche d’un terme :
“artichaud” * → Recherche d’un motif (expression régulière)
: une adresse email, une URL, un expéditeur, un numéro tel
=== 2.1 Rechercher un terme === Recherche simple d : document
de taille m On cherche un algorithme qui retourne toutes les
occurrences (position dans le doc) d’un certain terme t (de
taille k<m) t = "ami" d : "Les amis de mes amis sont mes
amis." ^ ^ ^ 4 16 30 * → La position de la première
occurrence du terme t : * → Les positions de toutes les
occurrences du terme t : * Complexité : $O(m \times k)$ on
note d le texte et t le motif recherché dans le texte <code>
Algo : recherche_simple Données : d, t : chaînes de
caractères Début n = len (d) m = len (t) i ←- 0 tant que i <
n - m: j ←- 0 tant que j < m et d[i+j] = t[j] : j += 1 si j
== m : retourner i sinon : i ←- i + 1 Fin </code> Remarque :
Il peut être nécessaire de vérifier que le terme est précédé
et suivi par les caractères d’espacement pour éviter de
détecter les mots dont le mot recherché est préfixe ou
suffixe. Cette approche a un inconvénient : après une
comparaison infructueuse, la comparaison suivante débutera à
la position i + 1, sans tenir aucun compte de celles qui ont
déjà eu lieu à l'itération précédente, à la position i.
Algorithme de Boyer-Moore L'algorithme de Boyer-Moore
examine d'abord la chaîne t et en déduit des informations
permettant de ne pas comparer chaque caractère plus d'une
fois. * On suppose qu'on peut tester si un caractère c
appartient au motif t en temps constant * Le but est de
calculer un décalage permettant de ne pas inspecter les
positions où il n'y a aucune chance de trouver le motif t. *
On commence par chercher la position i = m - 1 * Soit c = d[i] le
dernier caractère * Si c n'est pas dans t, le décalage vaut m
* Sinon on note k la position de la dernière occurrence de c
dans t * si k vaut m-1 (dernier caractère), le décalage vaut
m * Sinon le décalage est égal à m - 1 - k <note tip> Exemple
RECHERCHE DE CHAINES CODEES EN MACHINE CHINE CHINE CHINE
CHINE CHINE CHINE CHINE CHINE CHINE RECHERCHE DE CHAINES
CODEES EN MACHINE </note> === 2.2 Compter les mots ===
Lecture séquentielle des caractères : "Les amis de mes amis
sont mes amis." ^ position initiale de la tête de lecture *
Il ne faut compter que les debuts de mots * Un début de mot
e s t u n c a r a c t è r e a l p h a n u m é r i q u e : < c o d e >
{a,à,ä,b,c,ç,d,e,é,è,ê,ë,…,z,A,B,C,…,Z,1,2,3,…,0} </code> *
Tout ce qui n'est pas alphanumérique est un caractère
séparateur <code> {!,#,$,%,&,",',…} </code> * Autrement dit
on compte les couples (caractère séparateur, caractère
alphanumérique) * remarque : le début de chaîne compte comme
un caractère séparateur remarque : pour extraire la liste
des mots présents dans le texte, on doit identifier les
débuts et les fins de mots : * un début de mot est un couple

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

(sep., alphanum.) * une fin de mot est un couple (alphanum.,
sep.) <code> Algo : compte-mots Données : - d : chaîne de
caractères Début: nb_mots ←- 0 sep ←- Vrai pour tout c dans
d: si sep est Vrai et c est alphanumérique: sep ←- Faux
nb_mots ←- nb_mots + 1 sinon si sep est Faux et c est
séparateur: sep ←- Vrai retourner nb_mots Fin </code> Code
équivalent : compter les mots à l'aide d'un automate fini:
<code python> def compte_mots(d): state = 0 cpt = 0 for i in
range(len(d)): if state == 0 and is_alpha(d[i]): state = 1
cpt += 1 if state == 1 and is_sep(d[i]): state = 0 return
cpt </code> Présentation: un automate fini décrit les
différentes étapes d'un calcul sous la forme d'un graphe
orienté. * les sommets du graphe sont les états. Un état
identifie une étape de calcul. L'ensemble des états
représente la mémoire (finie) de l'automate. Il existe un
état initial, qui est celui dans lequel l'automate démarre
au début du calcul. * les arêtes représentent les
transitions d'état. Un transition correspond à l'exécution
d'un calcul élémentaire. Pour réaliser des calculs, on a
besoin d'opérandes. Les opérandes sont lus séquentiellement
en entrée de l'automate. Ils obéissent à un certain alphabet
(ou ensemble de symboles, …) Σ. Enfin, des résultats
de calcul sont produits en sortie de l'automate. Plus
concrètement, à chaque symbole lu en entrée, l'automate
consulte une table des symboles acceptés à partir de l'état
courant. Si le symbole est accepté, l'automate effectue la
transition d'état, et produit une sortie (par exemple
incrémenter le compteur de mots). Dans le cas contraire, il
s'arrête. Définition: Un automate fini est défini par : * un
alphabet d'entrée Σ (symboles acceptés) * un alphabet
de sortie Σ' * un ensemble (fini) de sommets : S *
un ensemble fini d'arêtes : $A : S \times \Sigma \rightarrow
S \times \Sigma'$ qui a tout couple (état, symbole d'entrée)
associe un couple (état, symbole de sortie) * un état
initial $s_0 \in S$ L'état initial et la séquence des
symboles lus définit la séquence de symboles produits en
sortie (le résultat du calcul) <note tip> Exemple : un
automate qui effectue l'addition binaire: * $\Sigma = \{0,
1\}²$ * $\Sigma' = \{0, 1\}$ * $S = \{1, 2\}$ * $s_0 = 1$

https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:automate-s5-1.png?id=tc_info%3A2020_cm_textes

2026/01/11 04:51 7/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

</note> La famille des automates finis définit une classe de
calculs (l'ensemble des calculs réalisables par des
automates finis): * séquences * boucles et branchements
conditionnels Mais pas : * appels récursifs remarque: il
existe des automates de calcul plus puissants : * automates
à piles (calcul récursif) * machines de Turing et machines
de Turing universelles (calcul sur des automates) permettant
d'implémenter des calculs plus complexes === 2.3 Recherche
de motifs et expressions régulières === De manière plus
générale recherche d’expressions peut être effectuée à
l’aide d’automates finis non déterministes. * Parmi les
états on distingue les états initiaux et terminaux. * Il
existe (parfois) plusieurs transitions possibles pour un
même symbole lu * Lorsque l'automate s'arrête, on regarde si
l'état est terminal. S'il est terminal, le mot est accepté
(autrement dit le motif est "reconnu") Remarque : pour tout
automate fini non déterministe A, il existe un automate fini
déterministe A′ qui reconnait le même langage (plus
compliqué à écrire). Représentation graphique : * les états
dans des cercles, * l’unique état initial par une flèche
pointant sur un état, * les états terminaux par un double
cercle concentrique sur l’état. * Les transitions d’état
quant à elles sont représentées par une flèche allant de
l’état de départ jusqu’à l’état d’arrivée indexée par le
caractère (ou le groupe de caractères) autorisant la
transition. Lecture séquentielle des caractères : "Les amis
de mes amis sont mes amis." ^ position initiale de la tête
de lecture <note tip> Exemple : mots se terminant par ab *
$\Sigma = \{a, b\}$ L'automate doit reconnaître les mots
suivants : ab bab abab bbab aabab abbab babab bbbab aaabab
e t c . .

https://wiki.centrale-med.fr/informatique/_detail/tc_info:addition_binaire.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

Pour aller plus loin : Cours5.html </note> Exemples: *
Reconnaître un nombre entier : +4, -455, 1024, 0

 * Reconnaître
un nombre réel : * TODO Remarques : * Les classes
d'expressions qui peuvent être reconnues par un automate

https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate_non_deterministe.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=6e440c&media=https%3A%2F%2Fpages.lip6.fr%2FJean-Francois.Perrot%2Finalco%2FAutomates%2FCours5.html
https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate-s5-2-alt.png?id=tc_info%3A2020_cm_textes

2026/01/11 04:51 9/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

fini sont appelées des expressions régulières * En python,
les expressions régulières s'expriment à l'aide d'une
syntaxe spécifique à l'aide de la librairie re * Les
expressions régulières (regex) servent à décrire des motifs
complexes à chercher ("marcher") dans les chaînes de
caractères. Traduction de l'automate non déterministe
précédent sous forme d'expression régulière : [ab]*ab
Remarque : les langages qui peuvent être reconnus par des
expressions régulières sont appelés les langages réguliers.
Exemples de langages non réguliers: * reconnaître les
palindromes * reconnaître une expression arithmétique *
vérifier la syntaxe d'un code informatique === Syntaxe des
expressions régulières Python === Définition : Il s’agit
d’une syntaxe “condensée” de description d’automates finis
permettant de reconnaître des motifs dans un texte. En
Python, les expressions régulières sont implémentées dans la
librairie re <code python> import re d = "Les astronautes de
la mission Gemini 8 sont désignés le 20 septembre 1965 :
Armstrong est le commandant et David Scott le pilote. Ce
dernier est le premier membre du groupe d'astronautes à
recevoir une place dans l'équipage titulaire d'une mission
spatiale. La mission est lancée le 16 mars 1966. Celle-ci
est la plus complexe réalisée jusque-là, avec un rendez-vous
et un amarrage du vaisseau Gemini avec l'étage de fusée
Agena et une activité extravéhiculaire (EVA) qui constitue
la deuxième sortie américaine et la troisième en tout,
réalisée par Scott. La mission doit durer 75 heures et le
vaisseau doit effectuer 55 orbites. Après le lancement de
l'étage-cible Agena à 15 h 00 UTC, la fusée Titan II GLV
transportant Armstrong et Scott décolle à 16 h 41 UTC. Une
fois en orbite, la poursuite de l'étage Agena par le
vaisseau Gemini 8 s'engage." liste_termes =
re.findall(r"([1-9]\d*|0)", d) </code> == Transitions :
caractères et groupes de caractères== * a : le caractère a *
[ab] : le caractère a ou le caractère b * [a-z] : n'importe
quel caractère minuscule entre a et z * [^a] : n'importe quel
caractère sauf le caractère a * : le caractère espace * \n :
le caractère "passage à la ligne" * . : n'importe quel
caractère * \. : le caractère "." uniquement * [1-9] : un
chiffre entre 1 et 9 * \w : n'importe quel caractère
alphanumérique * \s : n'importe quel caractère d'espacement *
\d : n'importe quel chiffre Def : une expression est définie
comme une suite de transition. Le mot est accepté lorsque la
suite de transitions est respectée Exemple : r"chal[eu]t"
accepte chalet et chalut r"\w\w\w" accepte tous les mots de
3 lettres Branchements et itération * Les parenthèses
permettent : * de factoriser une expression (qui peut alors
être traitée comme une transition) * (artichaud) * de définir
des branchements (Union): * (chien|chat) * * : le caractère ou
l'expression précédente répété entre 0 et n fois * + : le
caractère ou l'expression précédente répété entre 1 et n

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

fois * ? : le caractère ou l'expression précédente répété
entre 0 et 1 fois <note tip> Récapitulatif 1. Caractères
littéraux : * Les caractères alphabétiques et numériques
sont traités littéralement. Par exemple, le motif "abc"
correspond à la chaîne "abc". 2. Caractères spéciaux : *
Certains caractères ont une signification spéciale dans une
expression régulière et doivent être échappés s'ils doivent
être traités littéralement. Ces caractères spéciaux incluent
. ^ $ * + ? { } [] \ | (). 3. Classes de caractères : * [abc] :
Correspond à un caractère qui est soit a, b ou c. * [^abc] :
Correspond à un caractère qui n'est pas a, b ou c. * [a-z] :
Correspond à un caractère alphabétique en minuscules. * [A-Z]
: Correspond à un caractère alphabétique en majuscules. *
[0-9] : Correspond à un chiffre. 4. Caractères génériques : *
. : Correspond à n'importe quel caractère sauf une nouvelle
ligne. * \d : Correspond à un chiffre (équivalent à [0-9]). *
\D : Correspond à un caractère qui n'est pas un chiffre. * \w
: Correspond à un caractère alphanumérique (équivalent à [a-
zA-Z0-9_]). * \W : Correspond à un caractère qui n'est pas
alphanumérique. 5. Quantificateurs : * * : Correspond à zéro
ou plusieurs occurrences du caractère précédent. * + :
Correspond à une ou plusieurs occurrences du caractère
précédent. * ? : Correspond à zéro ou une occurrence du
caractère précédent. * {n} : Correspond exactement à n
occurrences du caractère précédent. * {n,} : Correspond à au
moins n occurrences du caractère précédent. * {n,m} :
Correspond à entre n et m occurrences du caractère
précédent. 6. Ancrages : * ^ : Correspond au début de la
chaîne. * $: Correspond à la fin de la chaîne. 7. Groupes et
Alternatives : * () : Crée un groupe. Par exemple, (abc)+
correspond à une ou plusieurs occurrences de "abc". * | :
Représente une alternative (ou). Par exemple, a|b correspond
à "a" ou "b". 8. Échappement : * \ : Permet d'échapper un
caractère spécial pour le traiter littéralement. Par
exemple, \ \ correspond à un seul backslash. </note>
==exemples== * reconnaître une adresse mail : <code>
r'\w[\.\w\-]*\w@\w[\.\w\-]*\.\w\w\w?' </code> ==== 3
Complétion / Correction ==== Un algorithme de complétion est
un mécanisme logique permettant d'anticiper la saisie et de
proposer des mots automatiquement pour faciliter les
recherches dans un formulaire sur une page web par exemple.
On utilise pour cela une structure de données arborescente,
où chaque nœud de l'arbre est une étape de lecture et chaque
arête correspond à la lecture d'une lettre. Les nœuds sont
indexés par les lettres suivantes possibles du mot, avec un
compteur par nœud pour savoir si celui-ci est final ou non
(le nœud est final si le compteur est >0). On commence par
construire un arbre de complétion à partir de mots de
vocabulaire, <note tip> V = {art, arbre, des, dessin}

2026/01/11 04:51 11/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

</note> L'arbre construit de cette manière est très large
mais peu profond : * Pour chaque nœud, le nombre de fils est
de l'ordre de la taille de l'alphabet utilisé * La hauteur
maximale est celle de la taille maximale des mots de
vocabulaire n_{max} * Par construction, le nombre d'arêtes
est borné par $|V|\times n_{max}$ Une fois l'arbre
construit, on l'utilise pour compléter un début de mot
proposé par l'utilisateur (souvent plusieurs complétions
possibles). Exemple : * début de mot : ar * complétions
p o s s i b l e s : { a r t , a r b r e } A u t r e e x e m p l e :

==== 4 Comparaison/appariement de textes ==== On cherche à
exprimer une distance entre deux chaînes de caractères. Une

https://wiki.centrale-med.fr/informatique/_detail/tc_info:arbre_completion.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=f68f4b&media=https%3A%2F%2Falgo.developpez.com%2Fimages%2Ffaq%2FStructuresArborescentes%2Farbre_patricia.png

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

distance entre 2 textes d1 et d2 est telle que : *
dist(d1,d2) = dist(d2,d1) * dist(d1,d2) ≥ 0 * dist(d1,d2) +
dist(d2,d3) ≥ dist(d1,d3) === Distance de Hamming === La
distance de Hamming entre deux chaînes de même taille est
définie comme le nombre de caractères non appariés. Ainsi la
distance de Hamming entre "passoire" et "pastèque" est égale
à 4. Exemple : p a s s o i r e | | | x x x x | p a s t e q u
e distance = 4 Peut-on généraliser cette distance à des
chaînes de taille différente? === Distance d'édition === La
distance d’édition est définie, pour deux chaînes de
longueur quelconque, comme le nombre minimal d’opérations
permettent de transformer d1 en d2, avec les opérations
suivantes : * ins(a) ⇢ insertion du caractère a * perm (a,
b) ⇢ remplacement de a par b * del (a) ⇢ suppression du
caractère a Il existe différentes manières de transformer la
chaîne d1 en d2. On peut par exemple supprimer tous les
caractères de d1 et insérer tous les caractères de d2, mais
c'est rarement le nombre d'opérations optimal (|d1|+|d2|). -
Exemples: * distance entre "robe", "arbre", et "porte".
<code> - r o b - e v | ^ | v | a r - b r e </code> dist = 3
<code> r o b - e x | x v | p o r t e </code> dist = 3 <code>
a - r b r e x v | x ^ | p o r t - e </code> dist = 4
===Calcul complet cloche/hochet=== La résolution de ce
problème repose sur les principes de la programmation
dynamique. Un problème d'optimisation combinatoire se
caractérise par : * un problème * un ensemble de solutions à
ce problème * une fonction de coût (ou une fonction
objectif) qui attribue un coût (resp un gain) à chacune des
solutions possibles apportées au problème Le nombre de
solutions possibles à un problème d'optimisation
combinatoire croît exponentielleemnt avec la taille du
problème. Trouver une solution par énumération à un tel
problème devient rapidement impossible pour des problèmes de
taille modérée. Certains problèmes d'OC peuvent être résolus
selon le principe de la programmation dynamique qui consiste
à décomposer le problème en sous-problèmes (et en sous-
solutions): * soit un problème P présentant une solution S
de coût C * Étant donné un sous problème $p \subset P$, * on
liste l'ensemble des sous-solutions s, s', s applicables à p

et on sélectionne celle dont le coût est le plus faible
on modifie S selon la sous-solution sélectionnée
on met à jour le coût global
on met à jour le sous-problème
et on recommence jusqu'à la convergence (p = P)

Dans le cas de l'appariement de chaîne:

une solution est un ensemble de transformations acceptables pour passer de la
chaîne A à la chaîne B
le coût est la somme des coûts des transformations appliquées
un sous-problème consiste à apparier un morceau de A avec un morceau de B

2026/01/11 04:51 13/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

En pratique:

on représente l’ensemble des transformations de d1 vers d2 sous la forme d’un
tableau de (m + 1) lignes et (n + 1) colonnes, avec m = |d1| et n = |d2|
pour chaque case (i,j) du tableau,

le passage vers la case (i, j+1) correspond à ins(d2[j])
le passage vers la case (i+1, j) correspond à del(d1[i])
le passage vers la case (i+1, j+1) correspond à perm(d1[i],d2[j]) ou
id(d1[i],d2[j]) si d1[i]=d2[j]

la valeur de la distance au niveau de la case (i,j) est égale au minimum de :
1 + dist(i, j+1)
1 + dist(i+1, j)
dist(i+1, j+1) si d1[i]=d2[j], ou 1 + dist(i+1, j+1) sinon

la distance au niveau de la case (m,n) vaut 0
la distance d'édition est donnée par la valeur dans la case (0,0)

=== Algorithme ===

Préparation

variables globales : d1, d2 : chaînes de caractères
m = |d1|
n = |d2|

Récursif!!

algo : distance
données :
 i, j : etape de calcul
début
 si i = m et j = n :
 retourner 0
 sinon si i = m :
 retourner dist(i, j+1) + 1
 sinon si j = n :
 retourner dist(i + 1, j) + 1
 sinon si d1[i] = d2[j] :
 retourner min(dist(i, j+1) + 1, dist(i + 1, j) + 1, dist(i
+ 1, j + 1))
 sinon
 retourner min(dist(i, j+1) + 1, dist(i + 1, j) + 1, dist(i
+ 1, j + 1) + 1)
fin

=== Alignement glouton ===

==== 5. Modèles génératifs (Hors programme) ====

https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:td3-alignement.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:alignement_glouton.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

Soit un document d :

constitué de T symboles $d[1]$, …, $d[i]$, ….
appartenant à l'alphabet $A = \{\alpha_1,...,\alpha_K\}$ constitué de K
symboles.

Une description statistique d’un texte correspond à un histogramme qui porte sur un
ensemble de symboles :

Modèles probabiliste : la suite de symbole observés (le message) est
générée par un processus aléatoire: $d = (d_1, d_2, ..., d_T$)

chaque d_i est la réalisation d'un tirage aléatoire
obéissant à une distribution de probabilité p

Les symboles sont au choix :

des caractères appartenant à un alphabet
des termes appartenant à un vocabulaire

=== 5.1 Modèles probabilistes ===

Les modèles probabilistes interprètent les données de type texte comme étant
générées par une distribution de probabilité P inconnue.

https://wiki.centrale-med.fr/informatique/_detail/restricted:text_mining.png?id=tc_info%3A2020_cm_textes

2026/01/11 04:51 15/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

La distribution P définit le langage utilisé dans le texte. On ne s'intéresse pas au
sens du message, on regarde seulement comment les symboles se répartissent dans
les documents, leurs fréquences d'apparition, les régularités, …

=== Fréquence d'un symbole ===

Soit $\alpha \in A$ un symbole de l'alphabet. On note $P(X=\alpha)$ la fréquence
d'apparition de ce symbole dans le langage \mathcal{L} considéré.

On a par définition~: $$\sum_{\alpha \in V} P(X=\alpha) = 1$$

Exemple: $$\boldsymbol{p}_\text{Français} = (0.0942, 0.0102,
0.0264, 0.0339, 0.01587, 0.095, 0.0104, 0.0077, 0.0841, 0.0089, ...)$$
où

$p_1 = 0.0942$ est la fréquence de la lettre 'A',
$p_2 = 0.0102$ est la fréquence d'apparition de la lettre 'B'
etc.

=== Probabilité jointe ===

On s'intéresse maintenant aux fréquence d'apparition de couples de lettre
successives.

Soient α et β deux symboles de l'alphabet.

Les séquences de deux caractères sont classiquement appelées
des bigrammes.
On définit de même les trigrammes comme les séquences de
trois caractères
etc.

On notera $\boldsymbol{P}_\mathcal{L}$ la matrice des fréquences des bigrammes
dans un langage \mathcal{L} donné, où P_{ij} donne la fréquence du bigramme
(α_i,α_j).

Exemple: $$\boldsymbol{P}_\text{Français} = 10^{-5} \times \left(
\begin{array}{cccc} 1.5 & 116.8 & 199.1 & ...\\ 62.8 & 1.6 & 0.14 &
...\\ 184.8 & 0 & 52.4 & ...\\ &...&&& \end{array} \right)$$

où

$P_{11} = 1.5 \times 10^{-5}$ est la fréquence du bigramme
'AA',
$P_{12} = 116.8 \times 10^{-5}$ est la fréquence d'apparition
du bigramme 'AB'

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

etc.

avec bien sûr : $$\sum_{(i,j) \in \{1,...,K\}^2} P_{ij}=1$$

voir comptage des bigrammes en français

La probabilité conditionnelle du caractère β étant donné le caractère
précédent α est définie comme :

$$P(Y = \beta | X=\alpha) = \frac{|\xi \in \Xi : (X,Y)=(\alpha,\beta)|}{|\xi \in \Xi : X =
\alpha|}$$

Soit en français :

$$ M_\text{Français} = \left(\begin{array}{cccc} 0.0016 & 0.0124 &
0.0211 & ...\\ 0.0615 & 0.0016 & 0.0001 & ...\\ 0.0700 & 0.0000 &
0.0198 & ...\\ & ... &&& \end{array} \right) $$ où :

M_{11} est la probabilité de voir un 'A' suivre un 'A'
M_{12} est la probabilité de voir un 'B' suivre un 'A'
etc.

La matrice des probabilités conditionnelles M permet de définir un
modèle génératif de langage inspiré des processus aléatoires de
Markov:

La production d'un mot ou d'un texte est modélisée comme un
parcours aléatoire sur une chaîne de Markov définie par la
matrice de transitions M.
La fréquence d'apparition des lettres est modélisée comme la
mesure stationnaire de la chaîne de Markov, autrement dit le
vecteur de probabilité vérifiant : $$ \boldsymbol{p} =
\boldsymbol{p} M$$

https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=06b63e&media=http%3A%2F%2Fwww.nymphomath.ch%2Fcrypto%2Fstat%2Ffrancais.html
https://wiki.centrale-med.fr/informatique/_detail/public:omi-5a-o-rech:proba_condi.png?id=tc_info%3A2020_cm_textes

2026/01/11 04:51 17/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

On peutétendre ce principe à la distribution des mots dans les textes, ce qui permet
de produire des modèles génératifs de langage.

Exemple : le pseudo latin ("Lorem Ipsum") : www.lipsum.com
Exemple de pseudo-français (Utilisant une trace (mémoire) de 1 mot):

j'ai vu parfois des yeux, remonter vers toi bien fatiguée! n'est pas un
appel de la terre– je hume à coups mutins les voiles la blafarde lumière
puisée au delà les vieux flacon débouché rien ne puis la pourriture les
forêts ou bien que vénus par des choses dans les forts des senteurs
confondues de ma chère, prêtre orgueilleux danse amoureusement
l'éphémère ébloui par ses couleurs du haut qu'avec effroi dans sa
beauté où je puis, sans remord un fleuve invisible d'un rayon frais
n'éclaira vos banquiers un parfait d'une girouette ou décor suborneur
ce temps! n'est plus ma carcasse superbe pyrrhus auprès d'un ange
enivré du souvenir pour moi même dans le tortu, il fée, dévotes et
mange retrouve jamais enfanté au poète– cependant de minéraux
charmants, horreur, plus t'enfourcher! folle, si bien loin des laves les
amants nous lançant son sein palpitant les blessés ou sirène
qu'importé le coin du vin des jongleurs sacrés au loin de ton bétail,
embusqué, et ton juge que ce globe entier dans les temps et d'un
mouvement qui m'accable sur moi hurlait longue misère toi sans pitié
de pleurs aboutit dans l'or et ne vibre que le soleil d'un chemin
bourbeux croyant par votre corps brûlé par mille labyrinthes c'est un
etre maudit soit actif ou de l'antre taciturne je le regard m'a déjà flaire
peut être n'importe où les vrais rois pour le frais n'éclaira vos riches
cités dans son coeur racorni,

=== 5.2 Espaces de plongement (Word embedding) === Le plongement des mots
(word embedding)

est une technique en traitement automatique du langage naturel (TALN)

https://wiki.centrale-med.fr/informatique/_detail/public:omi-5a-o-rech:markov-fr.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a92c67&media=https%3A%2F%2Fwww.lipsum.com%2F

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51

qui consiste à représenter les mots sous forme de vecteurs de nombres
réels dans un espace vectoriel.
L'idée est :

de projeter les mots dans cet espace vectoriel
où la proximité spatiale entre les vecteurs reflète la sémantique des mots.

Largement utilisés dans diverses tâches de traitement du langage
naturel:

classification de texte,1.
la traduction automatique,2.
l'analyse des sentiments,3.
la recherche d'information, etc4.

Word2Vec est un algorithme d'apprentissage de représentations de mots
(embeddings) développé par Tomas Mikolov et son équipe chez Google en 2013.

L'idée fondamentale est que les mots ayant des contextes similaires ont
tendance à avoir des significations similaires.
Word2Vec utilise des modèles de prédictions pour apprendre des
représentations vectorielles en analysant les contextes d'occurrence des mots
dans un corpus de texte.

Il existe deux architectures principales de Word2Vec : Skip-Gram et CBOW

=== 1. Skip-Gram === Dans l'approche Skip-Gram, le modèle tente de prédire les
mots environnants (contexte) à partir d'un mot donné (mot central). Le processus
d'apprentissage consiste à maximiser la probabilité d'observer les contextes donnés
un mot central :

\[\max \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log P(w_{t+j} \mid w_t) \]

où \(T\) est la taille du corpus, \(w_t\) est le mot central, \(w_{t+j}\) est le mot
contexte, et \(c\) est la taille de la fenêtre contextuelle.

=== 2. CBOW (Continuous Bag of Words) === Dans l'approche CBOW, le modèle
tente de prédire le mot central à partir des mots contextuels (contexte). Le processus
d'apprentissage consiste à maximiser la probabilité d'observer le mot central étant
donnés les contextes:

\[\max \sum_{t=1}^{T} \log P(w_t \mid w_{t-c}, \ldots, w_{t-1}, w_{t+1}, \ldots,
w_{t+c}) \]

où \(T\) est la taille du corpus, \(w_t\) est le mot central, et \(w_{t-i}\) sont les mots
contextuels dans la fenêtre de contexte.

=== Fonctionnement Général === Le processus d'apprentissage dans Word2Vec
implique la création d'une matrice de co-occurrence, où chaque entrée représente la
fréquence ou la probabilité d'occurrence conjointe de deux mots. À partir de cette
matrice, le modèle ajuste les vecteurs de mots de manière itérative pour maximiser la

2026/01/11 04:51 19/19 Algorithmes sur les Textes

WiKi informatique - https://wiki.centrale-med.fr/informatique/

probabilité d'observation du contexte étant donné le mot central.

Une fois l'apprentissage terminé, les vecteurs de mots obtenus (les embeddings)
capturent les relations sémantiques entre les mots dans l'espace vectoriel. Des mots
similaires seront représentés par des vecteurs similaires, ce qui permet d'effectuer
des opérations algébriques intéressantes telles que \(\text{"roi"} - \text{"homme"} +
\text{"femme"} \approx \text{"reine"} \).

Word2Vec a été révolutionnaire en raison de sa capacité à apprendre des
représentations de mots utiles à partir de grands volumes de texte non annoté, et ses
embeddings sont souvent utilisés comme points de départ pour de nombreuses tâches
de traitement du langage naturel (NLP) et d'apprentissage automatique.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

Last update: 2025/04/23 10:50

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

	[Algorithmes sur les Textes]
	Algorithmes sur les Textes
	1 Données texte
	1.1 Encodage des données
	1.2 Codage des caractères
	1.3 Codage des mots et du texte

