2026/01/11 04:51 1/19 Algorithmes sur les Textes

Algorithmes sur les Textes

1 Données texte
1.1 Encodage des données

On distingue classiguement deux grandes catégories de données :

e données quantitatives:
o numérique entier ou réel, discretes ou continues, bornées ou non. ex: poids, taille, age,
taux d’alcoolémie,...
o temporel : date, heure
o numéraire
o etc...
e données qualitatives:
o de type vrai/faux (données booléennes). ex: marié/non marié, majeur/non majeur
o de type appartenance a une classe. ex: célibataire/marié/divorcé/veuf,
salarié/chdmeur/retraité etc...
o de type texte (autrement dit “chaine de caracteres”). ex: nom, prénom, ville,...

D'un point de vue informatique, il n'existe pas de distinction entre le quantitatif et le
qualitatif. Tout est valeur numérique.

@ Une valeur numérique (digitale) consiste en:

e un champ de bits (dont la longueur est exprimée en octets)
e un processus de décodage : le format (ou type)

¢ Les données manipulées par un programme:

o sont codées sous un format binaire,

o correspondant a un des types informatiques que vous connaissez déja :
= entier,
» chaine de caracteres,
= réel simple ou double précision etc...

o ce qui implique en particulier :
* une précision finie,
= éventuellement des contraintes de place (le nom ou le prénom ne pouvant pas

dépasser n caracteres, les entiers pouvant étre choisis sur un intervalle fini etc...).

1.2 Codage des caracteres

char x
X X'

e X Une variable de type caractere
e 'x'la valeur numérique (encodé):

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

o Codage ASCII :
» codage de symboles du clavier numérique.

= Le nombre de symboles étant inférieur a 256, on le code sur un octet : 28 (= 256)
valeurs différentes

o Codage UTF-8:

= codage universel qui permet entre autre de coder les accents
o Codage latin-1 (caracteres latins étendus)
o etc...

La table ASCII

Il existe différents encodages binaires possibles pour les caracteres :
* le code ASCII code les caracteres du clavier anglais sur 7 bits, ce qui permet

d'interpréter chaque caractére comme un entier entre 0 et 127
o ainsi :

@ char ¢ = '/

int code int) ¢
System.out.println(code

o affiche la valeur 47 (le code ASCII du caractere '/')

voir aussi : java_type character.wp
1.3 Codage des mots et du texte

Chaine de caractére :

String s “bonjour"

e s est une variable

e "bonjour" est une séquence de caracteres
o "chafne" de caracteres : type string en anglais
o assimilable a un tableau de caractéere :

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51


https://wiki.centrale-med.fr/informatique/_detail/tc_info:capture_d_ecran_du_2025-04-23_10-37-41.png?id=tc_info%3A2020_cm_textes
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=9e391f&media=https%3A%2F%2Fkoor.fr%2FJava%2FTutorial%2Fjava_type_character.wp
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/11 04:51 3/19 Algorithmes sur les Textes

char c s.toCharArray
System.out.println(c

Affiche :

5 € O 35 O T

Le programme affiche les caractere 1 par 1, c’est une "chaine" de plusieurs caracteres individuels.

e La norme UTF-8 encode les caracteres sur un nombre d'octets variant entre 1 et
4. 1l permet ainsi de coder un nombre de caracteres considérablement plus
élevé.

o Exemple : le smiley '[]' appartient a la norme utf-8. Pour obtenir la valeur
entiere correspondante :

String s “a"
int code = s.codePointAt
System.out.println(code

@ e On peut inversement afficher le caracteére a partir de son code entier :
int codel
int code2
char charl char) codel
String char2 String(Character.toChars(code2

System.out.println(charl
System.out.println(char2

Donnée texte

Un texte, au méme titre qu'un mot, est une chaine de caracteres (dont la longueur est définie par la
longueur de la séquence de caractéres qui définissent le texte, ponctuations, espaces et caracteres
de retour a la ligne compris).

Les caracteres séparateurs

.\J) Par définition les caracteres séparateurs définissent la taille des espaces entre les
mots, ainsi que les passages a la ligne lors de I'affichage du texte.

WiKi informatique - https://wiki.centrale-med.fr/informatique/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+character
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

e : caractere nul * '': un espace simple * '\t': tabulation * '\n
passage a la ligne ("retour chariot") * '\b': retour arriere
("backspace") * etc. </note> Codage du texte L'ensemble des
messages possibles peut étre réduit a 1'ensemble des entiers
naturels. En effet, chaque caractere d'un texte peut étre
traduit en entier en interprétant 1le code binaire
correspondant comme un entier. Pour traduire une chaine de
caractéres en entier, il faut "construire un nombre" a
partir de chaque caractére de la chaine en prenant en compte
sa position. * ainsi, dans le systeme décimal, la position
du chiffre dans le nombre définit a quelle puissance de 10
il appartient (unité, dizaines, centaines, etc..) Le chiffre
le plus a gauche a la puissance la plus élevée et celui le
plus a droite la puissance la plus faible. * Si on suppose,
pour simplifier, que chaque caractere est codé par un entier
entre 0 et 255 (soit le code ASCII "étendu"), alors toute
séquence de caracteres (de claviers européens) exprime un
nombre en base 256. * Un tel nombre s'appelle un
“bytestring" ("chaine d'octets"). * Il existe une fonction
encode qui effectue une telle traduction * Exemple : <code
java> String s = "paul.poitevin@centrale-marseille.fr";
Encodage de la chaine en bytes en utilisant UTF-8 byte[] b =
s.getBytes(); Affichage des bytes encodés for (byte
byteValue : b) { System.out.print(byteValue + " "); }
- </code> ce qui affiche: <code> 112 97 117 108 46 112 111 105
ﬁ'P 116 101 118 105 110 64 99 101 110 116 114 97 108 101 45 109
97 114 115 101 105 168 108 101 46 102 114 </code> Un nombre
en base 256 est difficile a lire et interpréter. On le
traduit en base 10 : <code java> Conversion des bytes en
BigInteger BigInteger bigInteger = new BigInteger(b);
Affichage du résultat System.out.println("i = " +
bigInteger); </code> Ce qui donne : <code> i =
852806586114976881510056778471769180697471859150728801241505
293627173168229624211058 </code> === 1.4 Textes et bases de
textes === * Bases de textes : ensemble constitué de
plusieurs textes * Bases de documents, * Dossiers contenant
des documents * Collections de livres (électroniques) * - 10
- 104 * Contenus en ligne (descriptifs de films, articles de
journaux, descriptifs de produits.) * - 10> - 10° * Ensemble
du web (les pages web, en tant que telles, peuvent étre
considérées comme du texte mis en forme par du html). * -

10° * Messageries, Blogs, Forums : * 103 - 10°6
==Problématiques de la recherche de texte :== * temps de
réponse des algorithmes : * 1l'utilisateur classique veut

attendre moins de 2 a 3 secondes. * Sur des bases
extrémement grandes (type recherche web), il faut donc étre
trés performant pour atteindre ces temps de réponses. *
Stockage des données : * intégralité des textes ou simple
descriptif/résumé? * Les moteurs de recherche par exemple ne
stockent aucune page web, ils ne stockent que des index et
des références. ==Remarque :== Un document texte pourra étre

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51



2026/01/11 04:51 5/19 Algorithmes sur les Textes

décrit soit comme : * une séquence de caracteres (lettres) *
une séquence de termes (mots) ==== 2 Recherche dans les
textes ==== ==Exemples :== * - Recherche d’un terme
“artichaud” * - Recherche d’un motif (expression réguliere)
une adresse email, une URL, un expéditeur, un numéro tel
=== 2.1 Rechercher un terme === Recherche simple d : document
de taille m On cherche un algorithme qui retourne toutes les
occurrences (position dans le doc) d’un certain terme t (de
taille k<m) t = "ami" d : "Les amis de mes amis sont mes
amis." ~ ~ ~ 4 16 30 * - La position de la premiere
occurrence du terme t : * - Les positions de toutes les
occurrences du terme t : * Complexité : $0(m \times k)$ on
note d le texte et t le motif recherché dans le texte <code>
Algo : recherche simple Données : d, t : chaines de
caractéres Début n = len (d) m = len (t) i «- 0 tant que i <
n -m: j - 0 tant que j < m et d[i+j] = t[j] : jJ += 1 si j
==m : retourner i sinon : i «- i + 1 Fin </code> Remarque :
I1 peut étre nécessaire de vérifier que le terme est précédé
et suivi par les caracteres d’espacement pour éviter de
détecter les mots dont le mot recherché est préfixe ou
suffixe. Cette approche a un inconvénient : apres une
comparaison infructueuse, la comparaison suivante débutera a
la position i + 1, sans tenir aucun compte de celles qui ont
déja eu lieu a l'itération précédente, a la position 1i.
- Algorithme de Boyer-Moore L'algorithme de Boyer-Moore
'XJ> examine d'abord la chaine t et en déduit des informations
permettant de ne pas comparer chaque caractere plus d'une
fois. * On suppose qu'on peut tester si un caractere c
appartient au motif t en temps constant * Le but est de
calculer un décalage permettant de ne pas inspecter les
positions ou il n'y a aucune chance de trouver le motif t. *
On commence par chercher la position i=m-1 * Soit c = d[i] le
dernier caractere * Si ¢ n'est pas dans t, le décalage vaut m
* Sinon on note k la position de la derniére occurrence de ¢
dans t * si k vaut m-1 (dernier caractere), le décalage vaut
m * Sinon le décalage est égal a m-1-k <note tip> Exemple
RECHERCHE DE CHAINES CODEES EN MACHINE CHINE CHINE CHINE
CHINE CHINE CHINE CHINE CHINE CHINE RECHERCHE DE CHAINES
CODEES EN MACHINE </note> === 2.2 Compter les mots ===
Lecture séquentielle des caractéres : "Les amis de mes amis
sont mes amis." ~ position initiale de la téte de lecture *
I1 ne faut compter que les debuts de mots * Un début de mot
est un caractere alphanumérique : <code>
{a,a,a,b,c,¢,d,e,é,e,é,é,..,z,A,B,C,..,Z2,1,2,3,..,0} </code> *
Tout ce qui n'est pas alphanumérique est un caractere
séparateur <code> {!,#,$,%,&,","',.} </code> * Autrement dit
on compte les couples (caractere séparateur, caractere
alphanumérique) * remarque : le début de chaine compte comme
un caractere séparateur remarque : pour extraire la liste
des mots présents dans le texte, on doit identifier les
débuts et les fins de mots : * un début de mot est un couple

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

(sep., alphanum.) * une fin de mot est un couple (alphanum.,
sep.) <code> Algo : compte-mots Données : - d : chaine de
caracteres Début: nb mots «- 0 sep «- Vrai pour tout c dans
d: si sep est Vrai et c est alphanumérique: sep «- Faux
nb mots «- nb mots + 1 sinon si sep est Faux et c est
séparateur: sep «- Vrai retourner nb_mots Fin </code> Code
équivalent : compter les mots a l'aide d'un automate fini: E|
<code python> def compte mots(d): state = 0 cpt = 0 for 1 in
range(len(d)): if state == 0 and is alpha(d[i]): state =1
cpt += 1 if state == 1 and is sep(d[i]): state = 0 return
cpt </code> Présentation: un automate fini décrit les
différentes étapes d'un calcul sous la forme d'un graphe
orienté. * les sommets du graphe sont les états. Un état
identifie une étape de calcul. L'ensemble des états
représente la mémoire (finie) de 1l'automate. I1 existe un
état initial, qui est celui dans lequel l'automate démarre
au début du calcul. * 1les arétes représentent les
transitions d'état. Un transition correspond a 1l'exécution
d'un calcul élémentaire. Pour réaliser des calculs, on a
besoin d'opérandes. Les opérandes sont lus séquentiellement
en entrée de 1'automate. Ils obéissent a un certain alphabet
(ou ensemble de symboles, ..) $\Sigma$. Enfin, des résultats
de calcul sont produits en sortie de l'automate. Plus
concretement, a chaque symbole lu en entrée, 1'automate
- consulte une table des symboles acceptés a partir de 1'état
=i'P courant. Si le symbole est accepté, l'automate effectue la
transition d'état, et produit une sortie (par exemple
incrémenter le compteur de mots). Dans le cas contraire, il
s'arréte. Définition: Un automate fini est défini par : * un
alphabet d'entrée $\Sigma$ (symboles acceptés) * un alphabet
de sortie $\Sigma$' * un ensemble (fini) de sommets : $S$ *
un ensemble fini d'arétes : $A : S \times \Sigma \rightarrow
S \times \Sigma'$ qui a tout couple (état, symbole d'entrée)
associe un couple (état, symbole de sortie) * un état
initial $s 0 \in S$ L'état initial et 1la séquence des
symboles lus définit la séquence de symboles produits en
sortie (le résultat du calcul) <note tip> Exemple : un
automate qui effectue 1'addition binaire: * $\Sigma = \{0,
IN}2$ * $\Sigma' = \{0, I\}$ * $S = \{1, 2\}$ * $s 0 = 1%

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51


https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:automate-s5-1.png?id=tc_info%3A2020_cm_textes

2026/01/11 04:51 7/19 Algorithmes sur les Textes

(0,0):0

(0,1):0
(0, 1):1 .

. , (1,0): 0
(1,0): 1 (1,1):0 (1.1): 1

</note> La famille des automates finis définit une classe de
calculs (l'ensemble des calculs réalisables par des
automates finis): * séquences * boucles et branchements
conditionnels Mais pas : * appels récursifs remarque: il
existe des automates de calcul plus puissants : * automates
a piles (calcul récursif) * machines de Turing et machines
de Turing universelles (calcul sur des automates) permettant
d'implémenter des calculs plus complexes === 2.3 Recherche
de motifs et expressions réguliéres === De maniere plus
générale recherche d’'expressions peut étre effectuée a
' 1’aide d’automates finis non déterministes. * Parmi les
H'P états on distingue les états initiaux et terminaux. * Il
existe (parfois) plusieurs transitions possibles pour un
méme symbole lu * Lorsque l'automate s'arréte, on regarde si
1'état est terminal. S'il est terminal, le mot est accepté
(autrement dit le motif est "reconnu") Remarque : pour tout
automate fini non déterministe A, il existe un automate fini
déterministe A’ qui reconnait 1le méme langage (plus
compliqué a écrire). Représentation graphique : * les états
dans des cercles, * 1’unique état initial par une fleche
pointant sur un état, * les états terminaux par un double
cercle concentrique sur 1’état. * Les transitions d’état
guant a elles sont représentées par une fleche allant de
1’état de départ jusqu’a l'état d’arrivée indexée par le
caractere (ou le groupe de caracteres) autorisant 1la
transition. Lecture séquentielle des caracteres : "Les amis
de mes amis sont mes amis." ~ position initiale de la téte
de lecture <note tip> Exemple : mots se terminant par $ab$ *
$\Sigma = \{a, b\}$ L'automate doit reconnaitre les mots
suivants : ab bab abab bbab aabab abbab babab bbbab aaabab
etc..

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/_detail/tc_info:addition_binaire.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

Non déterministe:

nOR0

ab

Déterministe:

b
d da
f- \
Pour aller plus loin : Cours5.html </note> Exemples: *
Reconnaitre un nombre entier : +4, -455, 1024, O

1-9

* Reconnaitre
un nombre réel : * TODO Remarques : * Les classes
d'expressions qui peuvent étre reconnues par un automate

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51


https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate_non_deterministe.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=6e440c&media=https%3A%2F%2Fpages.lip6.fr%2FJean-Francois.Perrot%2Finalco%2FAutomates%2FCours5.html
https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate-s5-2-alt.png?id=tc_info%3A2020_cm_textes

2026/01/11 04:51 9/19 Algorithmes sur les Textes

fini sont appelées des expressions réguliéres * En python,
les expressions régulieres s'expriment a 1l'aide d'une
syntaxe spécifique a l'aide de la librairie re * Les
expressions régulieres (regex) servent a décrire des motifs
complexes a chercher ("marcher") dans les chaines de
caracteres. Traduction de 1'automate non déterministe
précédent sous forme d'expression réguliére : [ab]l*ab
Remarque : les langages qui peuvent étre reconnus par des
expressions régulieres sont appelés les langages réguliers.
Exemples de langages non réguliers: * reconnaitre les
palindromes * reconnaitre une expression arithmétique *
vérifier la syntaxe d'un code informatique === Syntaxe des
expressions régulieres Python === Définition : Il s’'agit
d’une syntaxe “condensée” de description d’automates finis
permettant de reconnaitre des motifs dans un texte. En
Python, les expressions régulieres sont implémentées dans la
librairie re <code python> import re d = "Les astronautes de
la mission Gemini 8 sont désignés le 20 septembre 1965
Armstrong est le commandant et David Scott le pilote. Ce
dernier est le premier membre du groupe d'astronautes a
recevoir une place dans 1'équipage titulaire d'une mission
spatiale. La mission est lancée le 16 mars 1966. Celle-ci
est la plus complexe réalisée jusque-la, avec un rendez-vous
et un amarrage du vaisseau Gemini avec 1'étage de fusée
. Agena et une activité extravéhiculaire (EVA) qui constitue
=XJ> la deuxieme sortie américaine et la troisieme en tout,
réalisée par Scott. La mission doit durer 75 heures et le
vaisseau doit effectuer 55 orbites. Apres le lancement de
1'étage-cible Agena a 15 h 00 UTC, la fusée Titan II GLV
transportant Armstrong et Scott décolle a 16 h 41 UTC. Une
fois en orbite, la poursuite de 1'étage Agena par le
vaisseau Gemini 8 s'engage." liste termes =
re.findall(r"([1-9]\d*|0)", d) </code> == Transitions
caracteres et groupes de caracteres== * a : le caractere a *
[ab] : le caractére a ou le caractére b * [a-z] : n'importe
quel caractere minuscule entre a et z * ["a] : n'importe quel
caractere sauf le caractéere a * : le caractére espace * \n

le caractere "passage a la ligne" * . : n'importe quel
caractere * \. : le caractere "." uniquement * [1-9] : un
chiffre entre 1 et 9 * \w : n'importe quel caractere

alphanumérique * \s : n'importe quel caractere d'espacement *
\d : n'importe quel chiffre Def : une expression est définie
comme une suite de transition. Le mot est accepté lorsque la
suite de transitions est respectée Exemple : r'"chal[eu]t"
accepte chalet et chalut r"\w\w\w" accepte tous les mots de
3 lettres Branchements et itération * Les parentheéeses
permettent : * de factoriser une expression (qui peut alors
étre traitée comme une transition) * (artichaud) * de définir
des branchements (Union): * (chien|chat) * * : 1le caractere ou
1'expression précédente répété entre 0 et n fois * + : le
caractére ou l'expression précédente répété entre 1 et n

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

fois * ? : le caractere ou l'expression précédente répété
entre 0 et 1 fois <note tip> Récapitulatif 1. Caracteres
littéraux : * Les caracteres alphabétiques et numériques
sont traités littéralement. Par exemple, le motif "abc"
correspond a la chaine "abc". 2. Caracteéres spéciaux : *
Certains caracteres ont une signification spéciale dans une
expression réguliere et doivent étre échappés s'ils doivent
étre traités littéralement. Ces caracteres spéciaux incluent
N8 *+?2{}[1\|(). 3. Classes de caracteres : * [abc]
Correspond a un caractere qui est soit a, b ou c. * ["abc]
Correspond a un caractére qui n'est pas a, b ou c. * [a-Z]
Correspond a un caractere alphabétique en minuscules. * [A-Z]
Correspond a un caractere alphabétique en majuscules. *
[0-9] : Correspond a un chiffre. 4. Caracteres génériques : *
Correspond a n'importe quel caractere sauf une nouvelle
ligne. * \d : Correspond a un chiffre (équivalent a [0-9]). *
\D : Correspond a un caractere qui n'est pas un chiffre. * \w
Correspond a un caractere alphanumérique (équivalent a [a-
zA-Z0-9 ]). * \W : Correspond a un caractéere qui n'est pas
alphanumérique. 5. Quantificateurs : * * : Correspond a zéro
ou plusieurs occurrences du caractere précédent. * +
Correspond a une ou plusieurs occurrences du caractere
précédent. * ? : Correspond a zéro ou une occurrence du
caractere précédent. * {n} : Correspond exactement a n
. occurrences du caractéere précédent. * {n,} : Correspond a au
'XJ> moins n occurrences du caractére précédent. * {n,m}
Correspond a entre n et m occurrences du caractere
précédent. 6. Ancrages : * * Correspond au début de 1la
chaine. * $ : Correspond a la fin de la chaine. 7. Groupes et
Alternatives : * () : Crée un groupe. Par exemple, (abc)+
correspond a une ou plusieurs occurrences de "abc". * |
Représente une alternative (ou). Par exemple, alb correspond
a "a" ou "b". 8. Echappement : * \ : Permet d'échapper un
caractere spécial pour le traiter 1littéralement. Par
exemple, \\ correspond a un seul backslash. </note>

==exemples== * reconnalitre une adresse mail : <code>
AW\ AWN-TRAWE\W N AW - T*\ L Aw\w\w?'  </code> ==== 3
Complétion / Correction ==== Un algorithme de complétion est

un mécanisme logique permettant d'anticiper la saisie et de
proposer des mots automatiquement pour faciliter les
recherches dans un formulaire sur une page web par exemple.
On utilise pour cela une structure de données arborescente,
ou chaque neud de l'arbre est une étape de lecture et chaque
aréte correspond a la lecture d'une lettre. Les necuds sont
indexés par les lettres suivantes possibles du mot, avec un
compteur par neud pour savoir si celui-ci est final ou non
(le neud est final si le compteur est >0). On commence par

construire un arbre de complétion a partir de mots de
vocabulaire, <note tip> V = {art, arbre, des, dessin}

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51



2026/01/11 04:51 11/19 Algorithmes sur les Textes

</note> L'arbre construit de cette maniere est tres large
mais peu profond : * Pour chaque neud, le nombre de fils est
de 1'ordre de la taille de 1'alphabet utilisé * La hauteur
maximale est celle de la taille maximale des mots de
( vocabulaire $n {max}$ * Par construction, le nombre d'arétes
b est borné par $|V|\times n {max}$ Une fois 1l'arbre
construit, on 1l'utilise pour compléter un début de mot
proposé par l'utilisateur (souvent plusieurs complétions
possibles). Exemple : * début de mot : ar * complétions
possibles : {art, arbre} Autre exemple:

(1)

(2) OO
mM@LOO® © 1 ONENO
e |[e][]W[ufC (1) OWEIEWO®E]E
%t @ Lle]le]  [e]lefle]CD L]
[u] O [@ t @)W
() (1] [u]fe
[t |

==== 4 Comparaison/appariement de textes ==== On cherche a
exprimer une distance entre deux chaines de caractéres. Une

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/_detail/tc_info:arbre_completion.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=f68f4b&media=https%3A%2F%2Falgo.developpez.com%2Fimages%2Ffaq%2FStructuresArborescentes%2Farbre_patricia.png

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

distance entre 2 textes dl et d2 est telle que : *
dist(dl,d2) = dist(d2,dl) * dist(dl,d2) = 0 * dist(dl,d2) +
dist(d2,d3) = dist(dl,d3) === Distance de Hamming === La

distance de Hamming entre deux chaines de méme taille est
définie comme le nombre de caracteres non appariés. Ainsi la
distance de Hamming entre "passoire" et "pasteque" est égale

a 4. Exemple : passoire]| || xxxx]|pastequ
e distance = 4 Peut-on généraliser cette distance a des
chaines de taille différente? === Distance d'édition === La

distance d’édition est définie, pour deux chaines de
longueur quelconque, comme le nombre minimal d’'opérations
permettent de transformer dl en d2, avec les opérations
suivantes : * ins(a) - insertion du caractére a * perm (a,
b) -» remplacement de a par b * del (a) - suppression du
caractere a Il existe différentes manieres de transformer la
chaine dl en d2. On peut par exemple supprimer tous les
caracteres de dl et insérer tous les caracteres de d2, mais
c'est rarement le nombre d'opérations optimal (|dl|+]|d2]|). -
Exemples: * distance entre "robe", "arbre", et "porte".
<code> - rob-ev | | v]|]ar-b>bre</code> dist = 3
<code>rob-ex | xv | porte</code> dist = 3 <code>
-rbrexv | x”~| port- e </code> dist = 4
==Calcul complet cloche/hochet=== La résolution de ce
probleme repose sur les principes de la programmation
dynamique. Un probleme d'optimisation combinatoire se
ﬁ'P caractérise par : * un probléeme * un ensemble de solutions a
ce probleme * une fonction de colt (ou une fonction
objectif) qui attribue un colt (resp un gain) a chacune des
solutions possibles apportées au probleme Le nombre de
solutions possibles a wun probleme d'optimisation
combinatoire croit exponentielleemnt avec la taille du
probléme. Trouver une solution par énumération a un tel
probleme devient rapidement impossible pour des problemes de
taille modérée. Certains problemes d'OC peuvent étre résolus
selon le principe de la programmation dynamique qui consiste
a décomposer le probleme en sous-problemes (et en sous-
solutions): * soit un probléme P présentant une solution S
de colt C * Etant donné un sous probléme $p \subset P$, * on
liste 1'ensemble des sous-solutions $s, s', s$ applicablesap
o et on sélectionne celle dont le co(t est le plus faible
on modifie S selon la sous-solution sélectionnée
on met a jour le co(t global
on met a jour le sous-probleme
et on recommence jusqu'a la convergence (p = P)

N o

Dans le cas de I'appariement de chaine

¢ une solution est un ensemble de transformations acceptables pour passer de la
chaine A a la chaine B

* |le colt est la somme des colts des transformations appliquées

e un sous-probleme consiste a apparier un morceau de A avec un morceau de B

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51



2026/01/11 04:51 13/19 Algorithmes sur les Textes

En pratique:

e on représente I'ensemble des transformations de d1 vers d2 sous la forme d'un
tableau de (m + 1) lignes et (n + 1) colonnes, avec m = |d1| et n = |d2
pour chaque case (i,j) du tableau,
o |le passage vers la case (i, j+1) correspond a ins(d2[j])
o |le passage vers la case (i+1, j) correspond a del(d1[i])
o le passage vers la case (i+1, j+1) correspond a perm(d1[i]l,d2[j]) ou
id(d1[i],d2[j]) si d1[i]=d2[]]
la valeur de la distance au niveau de la case (i,j) est égale au minimum de :
o 1 + dist(i, j+1)
o 1+ dist(i+1, j)
o dist(i+1, j+1) si d1[i]=d2[j], ou 1 + dist(i+1, j+1) sinon
la distance au niveau de la case (m,n) vaut 0
la distance d'édition est donnée par la valeur dans la case (0,0)

=]
=== Algorithme ===

Préparation

variables globales : dl, d2 : chaines de caracteres
m = |dl|
n = 1d2|

.ﬁu;) Récursif!!

algo : distance
données
i, j : etape de calcul
début
sii=metj=n
retourner 0
sinon si i =m :
retourner dist(i, j+1) + 1
sinon si j = n
retourner dist(i + 1, j) + 1
sinon si dl[i] = d2[j]
retourner min(dist(i, j+1) + 1, dist(i + 1, j) + 1, dist(i
+1, ] +1))
sinon
retourner min(dist(i, j+1) + 1, dist(i + 1, j) + 1, dist(i
+1, j+1) +1)
fin

=== Alignement glouton ===

[]

==== 5, Modeles génératifs (Hors programme) ====

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:td3-alignement.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:alignement_glouton.png?id=tc_info%3A2020_cm_textes

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

Soit un document $d$ :

e constitué de $T$ symboles $d[11$, ..., $d[il$, ....
» appartenant a l'alphabet $A = \{\alpha_1,...,\alpha_K\}$ constitué de $K$
symboles.

Une description statistique d'un texte correspond a un histogramme qui porte sur un
ensemble de symboles :

mesure

al a2 ak

Modeles probabiliste : la suite de symbole observés (le message) est
) générée par un processus aléatoire: $d = (d_1,d 2, ...,d_T$)
\

e chaque $d_i$ est la réalisation d'un tirage aléatoire
e obéissant a une distribution de probabilité $p$

Les symboles sont au choix :

@ e des caracteres appartenant a un alphabet
¢ des termes appartenant a un vocabulaire

=== 5.1 Modeles probabilistes ===

Les modeles probabilistes interpretent les données de type texte comme étant
générées par une distribution de probabilité $P$ inconnue.

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51


https://wiki.centrale-med.fr/informatique/_detail/restricted:text_mining.png?id=tc_info%3A2020_cm_textes

2026/01/11 04:51 15/19 Algorithmes sur les Textes

La distribution $P$ définit le langage utilisé dans le texte. On ne s'intéresse pas au
sens du message, on regarde seulement comment les symboles se répartissent dans
les documents, leurs fréquences d'apparition, les régularités, ...

=== Fréquence d'un symbole ===

Soit $\alpha \in A$ un symbole de I'alphabet. On note $P(X=\alpha)$ la fréquence
d'apparition de ce symbole dans le langage $\mathcal{L}$ considéré.

On a par définition~: $$\sum_{\alpha \in V} P(X=\alpha) = 1$$

Exemple: $$\boldsymbol{p} \text{Francais} = (0.0942, 0.0102,
0.0264, 0.0339, 0.01587, 0.095, 0.0104, 0.0077, 0.0841, 0.0089, ...)$$
ou

D e $p_1 = 0.0942% est la fréquence de la lettre 'A’,
e $p 2 =0.0102% est la fréquence d'apparition de la lettre 'B'
o etc.

=== Probabilité jointe ===

On s'intéresse maintenant aux fréquence d'apparition de couples de lettre
successives.

--\J) Soient $\alpha$ et $\beta$ deux symboles de |'alphabet.

e Les séquences de deux caractéres sont classiquement appelées

. des bigrammes.
e On définit de méme les trigrammes comme les séquences de
trois caracteres
o etc.

On notera $\boldsymbol{P} \mathcal{L}$ la matrice des fréquences des bigrammes
dans un langage $\mathcal{L}$ donné, ou $P _{ij}$ donne la fréquence du bigramme

$(\alpha_i,\alpha j)$.

Exemple: $$\boldsymbol{P} \text{Frangais} = 10" {-5} \times \left(
\begin{array}{cccc} 1.5 & 116.8 & 199.1 & ...\\ 62.8 & 1.6 & 0.14 &
.\ 184.8 &0 & 52.4 & ...\ &...&&& \end{array} \right)$$

LI

e $P {11} = 1.5 \times 10" {-5}$ est la fréquence du bigramme
IAAI,

e $P {12} = 116.8 \times 10" {-5}$ est la fréquence d'apparition
du bigramme 'AB'

WiKi informatique - https://wiki.centrale-med.fr/informatique/



Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

. etc.

avec bien sr : $$\sum_{(i,j) \in \{1,...,.K\} *2} P_{ij}=1%$

\, ‘) voir comptage des bigrammes en francais

La probabilité conditionnelle du caractere $\beta$ étant donné le caractere
précédent $\alpha$ est définie comme :

$$P(Y = \beta | X=\alpha) = \frac{|\xi \in \Xi : (X,Y)=(\alpha,\beta)|} {|\xi \in \Xi : X =
\alphal|}$$

Soit en francais :

$$ M \text{Francais} = \left( \begin{array}{cccc} 0.0016 & 0.0124 &
0.0211 & ...\\ 0.0615 & 0.0016 & 0.0001 & ...\\ 0.0700 & 0.0000 &
0.0198 & ...\\ & ... &&& \end{array} \right) $$ ou :

e $M {11}$ est la probabilité de voir un 'A' suivre un 'A'
e $M {12}$ est la probabilité de voir un 'B' suivre un 'A'
e etc.

La matrice des probabilités conditionnelles $M$ permet de définir un
modele génératif de langage inspiré des processus aléatoires de
Markov:

e La production d'un mot ou d'un texte est modélisée comme un
@ parcours aléatoire sur une chaine de Markov définie par la
matrice de transitions $M$.

e La fréquence d'apparition des lettres est modélisée comme la
mesure stationnaire de la chaine de Markov, autrement dit le
vecteur de probabilité vérifiant : $$ \boldsymbol{p} =
\boldsymbol{p} M$$

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51


https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=06b63e&media=http%3A%2F%2Fwww.nymphomath.ch%2Fcrypto%2Fstat%2Ffrancais.html
https://wiki.centrale-med.fr/informatique/_detail/public:omi-5a-o-rech:proba_condi.png?id=tc_info%3A2020_cm_textes

2026/01/11 04:51 17/19 Algorithmes sur les Textes

0.070
z."'
// — o
/o021 - ~ \\
/7 0.001 00001 M\

- 4 N —_\\ o002
.l'I '(/ L-""'\-{f H\l \'u \ _/-.1.
| | T

\ [/ o082/ .
Y _II"'\ - -
E :}%AA.- —
ooz \ N
™,
My

On peutétendre ce principe a la distribution des mots dans les textes, ce qui permet
de produire des modéles génératifs de langage.

e Exemple : le pseudo latin ("Lorem Ipsum") : www.lipsum.com
e Exemple de pseudo-francais (Utilisant une trace (mémoire) de 1 mot):

. j'ai vu parfois des yeux, remonter vers toi bien fatiguée! n'est pas un
..\J) appel de la terre- je hume a coups mutins les voiles la blafarde lumiére
puisée au dela les vieux flacon débouché rien ne puis la pourriture les
foréts ou bien que vénus par des choses dans les forts des senteurs
confondues de ma chére, prétre orgueilleux danse amoureusement
I'éphémére ébloui par ses couleurs du haut qu'avec effroi dans sa
beauté ou je puis, sans remord un fleuve invisible d'un rayon frais
n'éclaira vos banquiers un parfait d'une girouette ou décor suborneur
ce temps! n'est plus ma carcasse superbe pyrrhus auprés d'un ange
enivré du souvenir pour moi méme dans le tortu, il fée, dévotes et
'\) mange retrouve jamais enfanté au poete- cependant de minéraux
charmants, horreur, plus t'enfourcher! folle, si bien loin des laves les
amants nous lan¢cant son sein palpitant les blessés ou siréne
qu'importé le coin du vin des jongleurs sacrés au loin de ton bétail,
embusqué, et ton juge que ce globe entier dans les temps et d'un
mouvement qui m'accable sur moi hurlait longue misére toi sans pitié
de pleurs aboutit dans I'or et ne vibre que le soleil d'un chemin
bourbeux croyant par votre corps bralé par mille labyrinthes c'est un
etre maudit soit actif ou de [I'antre taciturne je le regard m'a déja flaire
peut étre n'importe ou les vrais rois pour le frais n'éclaira vos riches

cités dans son coeur racorni,

=== 5.2 Espaces de plongement (Word embedding) === Le plongement des mots
word embedding)

¢ est une technique en traitement automatique du langage naturel (TALN)

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/_detail/public:omi-5a-o-rech:markov-fr.png?id=tc_info%3A2020_cm_textes
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=a92c67&media=https%3A%2F%2Fwww.lipsum.com%2F

Last update: 2025/04/23 10:50 tc_info:2020_cm_textes https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

e qui consiste a représenter les mots sous forme de vecteurs de nombres
réels dans un espace vectoriel.
e L'idée est:
o de projeter les mots dans cet espace vectoriel
o ou la proximité spatiale entre les vecteurs reflete la sémantique des mots.

Largement utilisés dans diverses taches de traitement du langage
naturel:

( 1. classification de texte,
7 2. la traduction automatique,

3. I'analyse des sentiments,
4. la recherche d'information, etc

Word2Vec est un algorithme d'apprentissage de représentations de mots
(embeddings) développé par Tomas Mikolov et son équipe chez Google en 2013.

» L'idée fondamentale est que les mots ayant des contextes similaires ont
tendance a avoir des significations similaires.

e Word2Vec utilise des modeles de prédictions pour apprendre des
représentations vectorielles en analysant les contextes d'occurrence des mots
dans un corpus de texte.

. J) Il existe deux architectures principales de Word2Vec : Skip-Gram et CBOW
p

=== 1. Skip-Gram === Dans l'approche Skip-Gram, le modele tente de prédire les
mots environnants (contexte) a partir d'un mot donné (mot central). Le processus
d'apprentissage consiste a maximiser la probabilité d'observer les contextes donnés
un mot central :

\[ \max \sum_{t=1}"{T} \sum_{-c\legj\leqc, j\neq 0} \log P(w_{t+j} \mid w_t) \]

ou \(T\) est la taille du corpus, \(w_t\) est le mot central, \(w_{t+j}\) est le mot
contexte, et \(c\) est la taille de la fenétre contextuelle.

=== 2. CBOW (Continuous Bag of Words) === Dans |'approche CBOW, le modele
tente de prédire le mot central a partir des mots contextuels (contexte). Le processus
d'apprentissage consiste a maximiser la probabilité d'observer le mot central étant
donnés les contextes:

\[ \max \sum_{t=1}"{T} \log P(w_t \mid w_{t-c}, \Idots, w_{t-1}, w_{t+1}, \Idots,
w_{t+c})\]

ol \(T\) est la taille du corpus, \(w_t\) est le mot central, et \(w_{t-i}\) sont les mots
contextuels dans la fenétre de contexte.

=== Fonctionnement Général === Le processus d'apprentissage dans Word2Vec
implique la création d'une matrice de co-occurrence, ou chaque entrée représente la
fréquence ou la probabilité d'occurrence conjointe de deux mots. A partir de cette
matrice, le modele ajuste les vecteurs de mots de maniere itérative pour maximiser la

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 04:51



2026/01/11 04:51 19/19 Algorithmes sur les Textes

probabilité d'observation du contexte étant donné le mot central.

Une fois I'apprentissage terminé, les vecteurs de mots obtenus (les embeddings)

capturent les relations sémantiques entre les mots dans I'espace vectoriel. Des mots

similaires seront représentés par des vecteurs similaires, ce qui permet d'effectuer

des opérations algébriques intéressantes telles que \( \text{"roi"} - \text{"homme"} +
-\‘P \text{"femme"} \approx \text{"reine"} \).

Word2Vec a été révolutionnaire en raison de sa capacité a apprendre des
représentations de mots utiles a partir de grands volumes de texte non annoté, et ses
embeddings sont souvent utilisés comme points de départ pour de nombreuses taches
de traitement du langage naturel (NLP) et d'apprentissage automatique.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link: .
https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

Last update: 2025/04/23 10:50

WiKi informatique - https://wiki.centrale-med.fr/informatique/


https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:2020_cm_textes?rev=1745398243

	[Algorithmes sur les Textes]
	Algorithmes sur les Textes
	1 Données texte
	1.1 Encodage des données
	1.2 Codage des caractères
	1.3 Codage des mots et du texte




