
2026/01/10 08:16 1/8 TD-TP sur les Flots

WiKi informatique - https://wiki.centrale-med.fr/informatique/

TD-TP sur les Flots

Ce "TD-TP" est, comme son nom l'indique, constitué une partie TD à faire sur papier & d'une partie TP
à faire sur machine.

Il n'est pas nécessaire de faire tout le TD avant d'attaquer le TP, néanmoins, avant de programmer un
algorithme, il faut l'écrire à la main.

On considère un graphe orienté $G=(V,A)$ tel qu'à chaque arc (arête orientée) u
soit associé un nombre positif c_u, la capacité de u. Un flot (réalisable) est une
suite $\Phi = (\phi_u, u\in A)$ telle que :

Φ est compatible avec les capacités : $\forall u \in A, 0\leq \phi_u \leq c_u$
Φ respecte la loi de Kirchoff (ou loi des nœuds) : $\forall v \in V, \sum_{u \in
\Gamma^+(v)}{\phi_u} = \sum_{u \in \Gamma^-(v)}{\phi_u}$
$\Gamma^+(v)$ est l'ensemble des arcs entrant en v (i.e. qui vont d'un
sommet v' vers v) & $\Gamma^-(v)$ est l'ensemble des arcs sortant de
v.

Étant donnés deux sommets s & p (la source & le puit), le problème du flot
maximum est de faire passer le plus grand flot de s à p.

Pour se faire une idée un peu plus concrète que ce qu'est un flot, on peut imaginer
chaque arc comme un tuyau à sens unique (en fait, cette restriction n'est pas
nécessaire — cf Exercice 3) ayant un débit maximum (sa capacité), le problème étant
de faire passer le plus de liquide possible de la source au puit.

L'intérêt des flots est qu'ils permettent de modéliser un grand nombre de problèmes
concrets (i.e. du monde réel — & pas seulement pour les plombiers), par exemple des
problèmes d'affectation de tâches (connaissant les capacités/appétences de
différentes personnes, comment répartir entre elles des tâches à accomplir) ou de
logistique (organisation de réseaux de transport). & ce d'autant plus qu'il en existe un
grand nombre de variantes (flots compatibles, à coût minimum, avec multiplicateurs,
…)

Partie TD

L'exercice 1 est dédié à l'écriture d'un algorithme de flot maximum, les suivants à la modélisation de
problèmes concrets par un problème de flot.

1. Un algorithme de flot

Tout d'abord (& pas seulement pour cet algorithme), on rajoute au graphe un arc de retour (p,s).
Quel est l'intérêt de cet arc ? Réponse
Quelle est sa capacité ? Indication

https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo1_indic-1
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo1_indic-2

Last update: 2020/10/01 14:03 tc_info:2020_td-tp_flo https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 08:16

Étant donné un flot Φ sur un graphe $G=(V,A)$, on considère le graphe d'écart
G_Φ, avec les mêmes sommets que G &, pour chaque arc $u=(x,y)$ de A,
deux arcs $u^+ = (x,y)$, de capacité $c_u - \phi_u$ & $u^- = (y,x)$ de capacité
ϕ_u.

Les capacités des arcs u^+ & u^- sont appelées capacités résiduelles, elles
correspondent aux variations (augmentations ou diminutions) maximales de flux que
l'on peux faire sur l'arc u : la capacité de u^+ à l'augmentation & celle de u^-
à la diminution.
Remarquer que diminuer le flux sur l'arc $u=(x,y)$ d'une quantité q revient à
ajouter un flux de valeur q dans le sens (y,x).

En fait, dans le graphe d'écart, on ne met QUE les arcs de capacité résiduelle
strictement positive.

À quoi correspond un chemin de de s à p dans G_Φ ? Indication

En déduire un algorithme de flux maximum. Réponse

2. Mariages

Une agence matrimoniale a, comme clients, n hommes & p femmes. Parmi les $n\times p$
couples homme-femme1) possibles, certains sont compatibles. Le problème est de créer le plus
possible de couples (compatibles).

On modélisera ce problème par un flot maximum dans un graphe que l'on déterminera. Indication

3. Graphes non orientés

Montrez que l'algorithme des graphes d'écart peut s'adapter aux graphes non orientés. Indication

4. La bataille de la Marne

On a un ensemble S de villes & des routes reliant certaines villes entre elles (il peut exister
plusieurs routes entre deux villes). Chaque ville i est caractérisée par un nombre p_i de places de
parking, & chaque route j par une longueur l_j (le temps pour aller d'une extrémité à l'autre) &
une capacité c_j (nombre de véhicules pouvant l'emprunter par unité de temps).

Au temps $t=0$, un certain de nombre de véhicules sont stationnés dans différentes villes ; il faut
qu'au temps $t=K$, le plus possible de véhicules soient arrivés à une ville donnée (la Marne). Il est
possible que des véhicules arrivent avant cette date butoir, mais après la date K, c'est trop tard.

On modélisera ce problème par un flot maximum dans un graphe que l'on déterminera. Indication

https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo1_indic-3
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo1_indic-4
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo2_indic
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo3_indic
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo4_indic

2026/01/10 08:16 3/8 TD-TP sur les Flots

WiKi informatique - https://wiki.centrale-med.fr/informatique/

5. Des extensions

On peut supposer que chaque arc u a une capacité minimum c_u & une capacité
maximum c^u (on doit avoir $c_u\leq \phi_u \leq c^u$). Le problème est alors de
trouver un flux compatible (qui n'existe pas forcément).

On peut aussi supposer que chaque arc prélève un "péage", proportionnel à la
quantité de flux qui y passe. On a alors le problème du flux compatible à coût
minimum.

Montrez que la problème du plus court chemin (entre deux sommets x) & y dans un graphe
valué peut se modéliser par un problème de flux compatible à coût minimum dans un graphe que l'on
déterminera. Indication

6. Un théorème

Si toutes les capacités sont des entiers, que peut-on dire des flots maximums? Indication

Partie TP

On va maintenant implémenter (presque tout) ce qui a été vu dans la partie TD.

Le fait de tester toutes vos créations n'est plus explicitement demandé car cela doit
encore & toujours être fait.

1. Implémentation des graphes

Les graphes seront représentés "mathématiquement" par des listes d'adjacence, &
plus précisément/concrètement par des dictionnaires de dictionnaires de dictionnaires.
Par exemple :

CAPACITE = "capacite"
FLUX = "flux"

the_graph = {1: {2: {CAPACITE: 5, FLUX: 2}, 3:{CAPACITE: 6,
FLUX: 1}},
 2: {3: {CAPACITE: 7, FLUX: 1}, 4: {CAPACITE: 8,
FLUX: 1}},
 3: {5: {CAPACITE: 4, FLUX: 2}},
 4: {6: {CAPACITE: 3, FLUX: 2}},
 5: {4: {CAPACITE: 6, FLUX: 1}, 6: {CAPACITE: 8,

https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo5_indic
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_exo6_indic

Last update: 2020/10/01 14:03 tc_info:2020_td-tp_flo https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 08:16

FLUX: 1}},
 6: {}
 }

Dessinez le graphe ci-dessus. Indication

2. L'algorithme des graphes d'écart

Implémentez l'Algorithme des graphes d'écart. On pourra utiliser les fonctions suivantes Indication :

import math

INFINI = math.inf
CAPACITE = "capacite"
FLUX = "flux"

def mise_a_zero_flot(graph):
 for sommet in graph:
 for voisin in graph[sommet]:
 graph[sommet][voisin][FLUX] = 0

def construction_graphe_ecart(graphe_antisymetrique):
 graphe_ecart = {}
 for sommet in graphe_antisymetrique:
 graphe_ecart[sommet] = {}
 for sommet in graphe_antisymetrique:
 for voisin in graphe_antisymetrique[sommet]:
 capacite = graphe_antisymetrique[sommet][voisin][CAPACITE]
 flux = graphe_antisymetrique[sommet][voisin][FLUX]
 if capacite > flux:
 graphe_ecart[sommet][voisin] = capacite - flux
 if flux > 0:
 graphe_ecart[voisin][sommet] = flux
 return graphe_ecart

def construction_chemin_via_dfs(graphe_ecart, source, puits):
 sommets_marques = {}
 antecedents = {}
 pile = [source]
 for sommet in graphe_ecart:
 antecedents[sommet] = None
 while pile != []:
 sommet = pile.pop()
 if sommet not in sommets_marques:
 sommets_marques[sommet] = True

https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_tp_exo1_indic
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo_tp_exo2_indic

2026/01/10 08:16 5/8 TD-TP sur les Flots

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 for voisin in graphe_ecart[sommet]:
 if voisin not in sommets_marques:
 antecedents[voisin] = sommet
 pile.append(voisin)
 if sommet == puits:
 return construction_effective_chemin(sommet, antecedents)

def construction_effective_chemin(sommet, antecedents):
 chemin = []
 while sommet is not None:
 chemin.append(sommet)
 sommet = antecedents[sommet]
 chemin.reverse()
 return chemin

def min_sur_chemin(chemin, graphe_ecart):
 minimum = INFINI
 for i in range(len(chemin) - 1):
 courant = chemin[i]
 suivant = chemin[i + 1]
 if graphe_ecart[courant][suivant] < minimum:
 minimum = graphe_ecart[courant][suivant]
 return minimum

def ajout_flot(valeur, chemin, graphe_antisymetrique):
 for i in range(len(chemin) - 1):
 courant = chemin[i]
 suivant = chemin[i + 1]
 if suivant in graphe_antisymetrique[courant]:
 graphe_antisymetrique[courant][suivant][FLUX] += valeur
 else:
 graphe_antisymetrique[suivant][courant][FLUX] -= valeur

3. Le problème du mariage

Résoudre le problème du mariage avec les données suivantes :

CLEOPATRE = "Cleopatre"
IPHIGENIE = "Iphigenie"
JULIETTE = "Juliette"
FANNY = "Fanny"
CHIMENE = "Chimene"

ACHILLE = "Achille"
CESAR = "Cesar"
RODRIGUE = "Rodrigue"
ROMEO = "Romeo"

Last update: 2020/10/01 14:03 tc_info:2020_td-tp_flo https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 08:16

MARIUS = "Marius"

LES_COUPLES = [(CLEOPATRE, ACHILLE), (CLEOPATRE, CESAR), (CLEOPATRE, ROMEO),
 (IPHIGENIE, ACHILLE), (JULIETTE, CESAR), (JULIETTE,
RODRIGUE), (JULIETTE, ROMEO),
 (FANNY, CESAR), (FANNY, MARIUS), (CHIMENE, RODRIGUE),
(CHIMENE, ROMEO)]

La difficulté (puisque l'algorithme de flots est (normalement) déjà écrit) est la
construction du graphe à partir de la liste LES_COUPLES. Ceci doit bien sûr être fait par
un programme & non pas à la main.

4. La bataille de la Marne

Résoudre le problème de "la bataille de la Marne", en supposant que,

Au temps 0, on a autant de taxis que nécessaire dans la ville 14 ("Paris").
Au temps 50, il faut qu'il y en ait le plus possible dans la ville 0 ("La Marne").
Chaque ville (intermédiaire) a 10 places de parking (Paris en a autant que nécessaire).
Les routes sont données dans le tableau suivant :

LES_ROUTES = [{'depart': 0, 'capacite': 2, 'arrivee': 1, 'longueur': 5},
{'depart': 0, 'capacite': 3, 'arrivee': 2, 'longueur': 3},
{'depart': 0, 'capacite': 6, 'arrivee': 1, 'longueur': 6},
{'depart': 1, 'capacite': 3, 'arrivee': 2, 'longueur': 6},
{'depart': 1, 'capacite': 7, 'arrivee': 4, 'longueur': 7},
{'depart': 1, 'capacite': 6, 'arrivee': 2, 'longueur': 7},
{'depart': 2, 'capacite': 7, 'arrivee': 4, 'longueur': 4},
{'depart': 2, 'capacite': 6, 'arrivee': 4, 'longueur': 8},
{'depart': 2, 'capacite': 2, 'arrivee': 5, 'longueur': 5},
{'depart': 3, 'capacite': 7, 'arrivee': 5, 'longueur': 5},
{'depart': 3, 'capacite': 3, 'arrivee': 5, 'longueur': 4},
{'depart': 3, 'capacite': 7, 'arrivee': 6, 'longueur': 4},
{'depart': 4, 'capacite': 7, 'arrivee': 5, 'longueur': 8},
{'depart': 4, 'capacite': 8, 'arrivee': 7, 'longueur': 3},
{'depart': 4, 'capacite': 4, 'arrivee': 7, 'longueur': 3},
{'depart': 5, 'capacite': 8, 'arrivee': 6, 'longueur': 8},
{'depart': 5, 'capacite': 4, 'arrivee': 7, 'longueur': 7},
{'depart': 5, 'capacite': 4, 'arrivee': 6, 'longueur': 5},
{'depart': 6, 'capacite': 5, 'arrivee': 9, 'longueur': 3},
{'depart': 6, 'capacite': 5, 'arrivee': 7, 'longueur': 3},
{'depart': 6, 'capacite': 7, 'arrivee': 8, 'longueur': 3},
{'depart': 7, 'capacite': 2, 'arrivee': 8, 'longueur': 8},
{'depart': 7, 'capacite': 2, 'arrivee': 10, 'longueur': 5},
{'depart': 7, 'capacite': 7, 'arrivee': 10, 'longueur': 4},
{'depart': 8, 'capacite': 3, 'arrivee': 11, 'longueur': 4},
{'depart': 8, 'capacite': 5, 'arrivee': 9, 'longueur': 3},
{'depart': 8, 'capacite': 8, 'arrivee': 10, 'longueur': 3},

2026/01/10 08:16 7/8 TD-TP sur les Flots

WiKi informatique - https://wiki.centrale-med.fr/informatique/

{'depart': 9, 'capacite': 1, 'arrivee': 11, 'longueur': 8},
{'depart': 9, 'capacite': 4, 'arrivee': 12, 'longueur': 3},
{'depart': 9, 'capacite': 1, 'arrivee': 11, 'longueur': 7},
{'depart': 10, 'capacite': 5, 'arrivee': 12, 'longueur': 7},
{'depart': 10, 'capacite': 3, 'arrivee': 13, 'longueur': 3},
{'depart': 10, 'capacite': 7, 'arrivee': 11, 'longueur': 4},
{'depart': 11, 'capacite': 4, 'arrivee': 14, 'longueur': 8},
{'depart': 11, 'capacite': 2, 'arrivee': 12, 'longueur': 3},
{'depart': 11, 'capacite': 6, 'arrivee': 14, 'longueur': 6},
{'depart': 12, 'capacite': 5, 'arrivee': 13, 'longueur': 6},
{'depart': 12, 'capacite': 2, 'arrivee': 14, 'longueur': 7},
{'depart': 12, 'capacite': 2, 'arrivee': 14, 'longueur': 6},
{'depart': 13, 'capacite': 2, 'arrivee': 14, 'longueur': 5},
{'depart': 13, 'capacite': 2, 'arrivee': 14, 'longueur': 3},
{'depart': 13, 'capacite': 8, 'arrivee': 14, 'longueur': 6}]

Les routes sont à double sens (il ne faut pas se fier aux appellations "départ" &
"arrivée").

La difficulté est, là encore, la construction du graphe.

On pourra commencer par une instance plus petite, par exemple en ne considérant que les villes
jusqu'à 9, avec un borne max pour le temps de 15, c'est à dire avec :

LES_ROUTES = [{'depart': 0, 'capacite': 2, 'arrivee': 1, 'longueur': 5},
{'depart': 0, 'capacite': 3, 'arrivee': 2, 'longueur': 3},
{'depart': 0, 'capacite': 6, 'arrivee': 1, 'longueur': 6},
{'depart': 1, 'capacite': 3, 'arrivee': 2, 'longueur': 6},
{'depart': 1, 'capacite': 7, 'arrivee': 4, 'longueur': 7},
{'depart': 1, 'capacite': 6, 'arrivee': 2, 'longueur': 7},
{'depart': 2, 'capacite': 7, 'arrivee': 4, 'longueur': 4},
{'depart': 2, 'capacite': 6, 'arrivee': 4, 'longueur': 8},
{'depart': 2, 'capacite': 2, 'arrivee': 5, 'longueur': 5},
{'depart': 3, 'capacite': 7, 'arrivee': 5, 'longueur': 5},
{'depart': 3, 'capacite': 3, 'arrivee': 5, 'longueur': 4},
{'depart': 3, 'capacite': 7, 'arrivee': 6, 'longueur': 4},
{'depart': 4, 'capacite': 7, 'arrivee': 5, 'longueur': 8},
{'depart': 4, 'capacite': 8, 'arrivee': 7, 'longueur': 3},
{'depart': 4, 'capacite': 4, 'arrivee': 7, 'longueur': 3},
{'depart': 5, 'capacite': 8, 'arrivee': 6, 'longueur': 8},
{'depart': 5, 'capacite': 4, 'arrivee': 7, 'longueur': 7},
{'depart': 5, 'capacite': 4, 'arrivee': 6, 'longueur': 5},
{'depart': 6, 'capacite': 5, 'arrivee': 9, 'longueur': 3},
{'depart': 6, 'capacite': 5, 'arrivee': 7, 'longueur': 3},
{'depart': 6, 'capacite': 7, 'arrivee': 8, 'longueur': 3},
{'depart': 7, 'capacite': 2, 'arrivee': 8, 'longueur': 8},
{'depart': 7, 'capacite': 2, 'arrivee': 10, 'longueur': 5},
{'depart': 7, 'capacite': 7, 'arrivee': 10, 'longueur': 4},

Last update: 2020/10/01 14:03 tc_info:2020_td-tp_flo https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 08:16

{'depart': 8, 'capacite': 3, 'arrivee': 11, 'longueur': 4},
{'depart': 8, 'capacite': 5, 'arrivee': 9, 'longueur': 3}]

voire même plus petit.

1)

Il est tout à fait possible de considérer d'autres couples, mais le problème est plus compliqué.

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo

Last update: 2020/10/01 14:03

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:2020_td-tp_flo

	[TD-TP sur les Flots]
	TD-TP sur les Flots
	Partie TD
	1. Un algorithme de flot
	2. Mariages
	3. Graphes non orientés
	4. La bataille de la Marne
	5. Des extensions
	6. Un théorème

	Partie TP
	1. Implémentation des graphes
	2. L'algorithme des graphes d'écart
	3. Le problème du mariage
	4. La bataille de la Marne

