
2026/01/10 16:38 1/8 Exercice 1 : Chercher un mot

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Exercice 1 : Chercher un mot

Soit une chaîne de caractères d de longueur n et un mot t de longueur m<n.

Donner l'algorithme naïf retournant la position de la première occurrence du mot t dans la1.
chaîne d (ou -1 s'il est absent). Quelle est sa complexité?
Donner de même l'algorithme retournant la position de toutes les occurrences du mot t dans la2.
chaîne d (ou une liste vide s'il est absent). Quelle est sa complexité?
On suppose qu'on peut tester si un caractère c appartient au motif t en temps constant.3.
Proposez un algorithme plus efficace que l'algorithme naïf.

on note d le texte et t le motif recherché dans le texte

Algo : recherche_simple
Données : d, t : chaînes de caractères
 n = len (d)
 m = len (t)
 i <-- 0
 tant que i < n - m:
 j <-- 0
 tant que j < m et d[i+j] = t[j] :
 j += 1
 si j == m :
 return i
 sinon :
 i <-- i + 1

Le deuxième est plus ou moins pareil

Algo : recherche_multiple
Données : d, t : chaînes de caractères
 n = len (d)
 m = len (t)
 l = []
 i <-- 0
 tant que i < n - m:
 j <-- 0
 tant que j < m et d[i+j] = t[j] :
 j += 1
 si j == m :
 l.append(i)
 i <-- i + 1
 retourner l

Cette approche a un inconvénient : après une comparaison infructueuse, la
comparaison suivante débutera à la position i + 1, sans tenir aucun compte de celles
qui ont déjà eu lieu à l'itération précédente, à la position i.

Algorithme de Boyer-Moore

Last update: 2023/12/01 09:49 tc_info:2023-td-texte-corr https://wiki.centrale-med.fr/informatique/tc_info:2023-td-texte-corr

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 16:38

L'algorithme de Boyer-Moore examine d'abord la chaîne t et en déduit des
informations permettant de ne pas comparer chaque caractère plus d'une fois.

On suppose qu'on peut tester si un caractère c appartient au motif t en temps
constant
Le but est de calculer un décalage permettant de ne pas inspecter les positions
où il n'y a aucune chance de trouver le motif t.
On commence par chercher la position i = m - 1
Soit c = d[i] le dernier caractère
Si c n'est pas dans t, le décalage vaut m
Sinon on note k la position de la dernière occurrence de c dans t

si k vaut m-1 (dernier caractère), le décalage vaut m
Sinon le décalage est égal à m - 1 - k

Exemple:

RECHERCHE DE CHAINES CODEES EN MACHINE
CHINE
 CHINE
 CHINE
 CHINE
 CHINE
 CHINE
 CHINE
 CHINE
 CHINE
RECHERCHE DE CHAINES CODEES EN MACHINE

Voici le code :

Algo : recherche améliorée
Données : d, t : chaînes de caractères
 n = len (d)
 m = len (t)
 i <-- m - 1
 tant que i < n :
 # PRE-TRAITEMENT
 c = d[i]
 si c appartient à t:
 k <-- dernière_occurrence(c, t)
 si k == m-1:
 decalage <-- m
 sinon
 decalage <-- m - 1 - k
 sinon:
 decalage <-- m
 # TRAITEMENT
 j <-- 0
 tant que j < m :
 si t[m - j - 1] = d[i - j]
 j += 1

2026/01/10 16:38 3/8 Exercice 1 : Chercher un mot

WiKi informatique - https://wiki.centrale-med.fr/informatique/

 sinon
 break
 si j = m:
 retourner i - m + 1
 # DECALAGE
 i <-- i + decalage
 retourner -1

Exercice 2 : Compter les mots

1. Écrire un algorithme qui compte le nombre de mots dans un texte.

Remarque : On considère comme caractère d'espacement tout caractère qui n'est pas
alphanumérique (alphabétique accentué ou non et chiffres).

2. Dessiner l'automate fini correspondant.

Algorithme à expliquer avec un petit automate fini à deux états

def compte_mots(d):
 state = 0
 cpt = 0
 for i in range(len(d)):
 if state == 0 and is_alpha(d[i]):
 state = 1
 cpt += 1
 if state == 1 and is_sep(d[i]):
 state = 0
 return cpt

Exercice 3 : Palindrome

1. Écrire un algorithme récursif permettant de savoir si un tableau de caractères est un palindrome
(un palindrome se lit "à l'endroit" et "à l'envers" de la même façon, comme par exemple "à l'étape,
épate-la!").

Remarque : on ne considère ni la ponctuation, ni les espaces, ni les accents.

Quelle est sa complexité?

C'est un algo qu'on a déjà vu
2. Pouvez-vous définir un automate fini capable de reconnaître les palindromes?

https://wiki.centrale-med.fr/informatique/_detail/tc_info:corr:automate-s5-1.png?id=tc_info%3A2023-td-texte-corr

Last update: 2023/12/01 09:49 tc_info:2023-td-texte-corr https://wiki.centrale-med.fr/informatique/tc_info:2023-td-texte-corr

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 16:38

L'intérêt de cet exo est de montrer que certains motifs ne sont pas reconnaissables
par les automates finis. Ici dans le cas du palindrome, il faudrait un automate qui
accepte a, b, aa, bb, aaa, aba, bbb, bab, aaaa, abba, etc… l'automate existe si on
limite la taille max des palindromes mais pas dans le cas général. Par ailleurs, le nb
d'états est exponentiel.

La solution consisterait à utiliser un automate à pile (non vu en cours). On a alors deux
états principaux : un état correspondant à l'empilage des symboles d'entrée, et un
état correspondant au dépilage de la pile et à la comparaison avec les symboles
d'entrée. La comparaison n'est acceptée que si les symboles sont identiques, et le mot
est reconnu lorsque la pile est vide.

Exercice 4 : Expressions régulières

Les langages réguliers sont des types de langages formels qui peuvent être reconnus par un
automate fini.
Le langage des expressions régulières est un langage régulier qui permet de décrire des motifs
(c'est à dire des classes de mots) dans une chaîne de caractère.

1. Donnez l'expression régulière permettant de reconnaître les entiers relatifs et dessiner
l'automate fini correspondant.

Réponse : ([+-]?[1-9][0-9]*|0)

le chiffre commence par +, - ou rien du tout
il n’y a pas de 0 au début de la partie entière
il n’y a pas de caractère entre, seulement des chiffres au milieu.

A u t o m a t e q u i r e c o n n a î t l e s n o m b r e s e n t i e r s :

2. Donnez l'expression régulière permettant de reconnaître les nombres décimaux (par
exemple -3, 12.3, -12.34, +3, 0.) et dessiner l'automate fini correspondant.

Réponse : ([+-]?[1-9][0-9]*|0)\.[0-9]*

https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate-s5-2-alt.png?id=tc_info%3A2023-td-texte-corr

2026/01/10 16:38 5/8 Exercice 1 : Chercher un mot

WiKi informatique - https://wiki.centrale-med.fr/informatique/

3. Donnez l'expression régulière expression régulière qui valide les noms de fichiers se
terminant par l'une des extensions spécifiées : .jpg, .png, ou .gif et dessiner l'automate
fini correspondant.

Réponse : \w+\.(gif|png|jpg)

4. Donnez une expression régulière pour reconnaître les URL commençant par https://.

Correction :

https://[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}

5. Écrivez une expression régulière pour reconnaître la date et l'heure au format YYYY-MM-
DD (HH:MM) Correction :

\d\d\d\d-(0[1-9]|1[12])-(0[1-9]|[12][0-9]|3[0-1])
\((0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]\)

https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate_decimaux.png?id=tc_info%3A2023-td-texte-corr
https://wiki.centrale-med.fr/informatique/_detail/tc_info:automate-term.png?id=tc_info%3A2023-td-texte-corr
https://wiki.centrale-med.fr/informatique/lib/exe/fetch.php?tok=1d7ea8&media=https%3A%2F%2F

Last update: 2023/12/01 09:49 tc_info:2023-td-texte-corr https://wiki.centrale-med.fr/informatique/tc_info:2023-td-texte-corr

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 16:38

Exercice 5

1. Ecrire l'algorithme de reconnaissance de l'expression régulière (a|b)*c

def reconnait(s):
 final = False
 for c in s:
 if final:
 final = False
 break
 if (c not in 'abc'):
 break
 if c=='c':
 final = True
 return final

2. Dessiner son automate fini

3. Soit G le graphe orienté décrivant cet automate, chaque arête étant indexée par un
caractère. Donner l'algorithme qui indique si oui ou non l'expression est reconnue dans
une chaîne s à partir de son automate fini.

G = { 0 : {'a':0, 'b':0, 'c':1}, 1:{}}

def reconnait_auto(s, G):
 state = 0
 for c in s:
 if c in G[state]:
 state = G[state][c]
 else:
 return False
 if state == 1:
 return True
 else:
 return False

4. Quelle est sa complexité?

Longueur de la chaîne

https://wiki.centrale-med.fr/informatique/_detail/tc_info:afd.png?id=tc_info%3A2023-td-texte-corr

2026/01/10 16:38 7/8 Exercice 1 : Chercher un mot

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Exercice 6

1. Même exercice avec l'expression régulière (a|b)*ab

def reconnait_nd(s):
 transit_a = False
 final_b = False
 for c in s:
 if (c not in 'ab'):
 break
 if c=='b':
 if transit_a:
 transit_a = False
 final_b = True
 else:
 final_b = False
 if c == 'a':
 final_b = False
 transit_a = True
 return final_b

2. Dessiner son automate fini

Voir le graphe G ci-dessous Attention, graphe non déterministe!!

G = { 0 : {'a':(0,1), 'b':(0,)}, 1:{'b':(2,)}, 2:{}}

3. Soit G le graphe orienté décrivant cet automate, chaque arête étant indexée par un
caractère. Donner l'algorithme qui indique si oui ou non l'expression est reconnue dans
une chaîne s à partir de son automate fini.

def reconnait_auto_nd(s, G):
 states = set((0,))
 for c in s:
 previous_states = states
 states = set()
 for state in previous_states:
 if c in G[state]:

https://wiki.centrale-med.fr/informatique/_detail/tc_info:afnd_1_.png?id=tc_info%3A2023-td-texte-corr

Last update: 2023/12/01 09:49 tc_info:2023-td-texte-corr https://wiki.centrale-med.fr/informatique/tc_info:2023-td-texte-corr

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 16:38

 next_states = G[state][c]
 for state in next_states:
 states.add(state)
 print(c, states)
 if len(states) == 0 :
 return False
 if 2 in states:
 return True
 else:
 return False

4. Complexité

$O(n \times l)$ avec n le nb d'états et l la longueur de la chaîne

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/tc_info:2023-td-texte-corr

Last update: 2023/12/01 09:49

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:2023-td-texte-corr

	[Exercice 1 : Chercher un mot]
	[Exercice 1 : Chercher un mot]
	Exercice 1 : Chercher un mot
	Exercice 2 : Compter les mots
	Exercice 3 : Palindrome
	Exercice 4 : Expressions régulières
	Exercice 5
	Exercice 6

