
2025/12/22 10:21 1/5 Fonctions de hachage

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Fonctions de hachage

Rappel Soit E un ensemble de messages de taille quelconque. On souhaite indexer ces messages
à l'aide d'une fonction d'encodage H qui va de \mathcal{M} (l'ensemble des messages possibles)
vers l'intervalle $[0,...,n[$.

La fonction de hachage :

"calcule" la valeur de l'identifiant à partir du message de départ.
doit être telle que la probabilité de choisir le même identifiant pour deux messages différents
soit extrêmement faible.

Etape 1 : transcodage binaire des données

L'ensemble des messages possibles peut être réduit à l'ensemble des entiers naturels. En effet,
chaque caractère d'un texte peut être traduit en entier en interprétant le code binaire correspondant
comme un entier.

Il existe différents encodages binaires possibles pour les caractères :

le code ASCII code les caractères du clavier anglais sur 7 bits, ce qui permet
d'interpréter chaque caractère comme un entier entre 0 et 127

ainsi :

code = ord('/')
print(code)

affiche la valeur 47 (le code ASCII du caractère '/')
La norme UTF-8 encode les caractères sur un nombre d'octets variant entre 1 et
4. Il permet ainsi de coder un nombre de caractères considérablement plus
élevé.

Exemple : le smiley '�' appartient à la norme utf-8. Pour obtenir la valeur
entière correspondante :

code = ord('�')
print(code)

On peut inversement afficher le caractère à partir de son code entier :

print(chr(233))
print(chr(119070))

Pour traduire une chaîne de caractères en entier, il faut "construire un nombre" à partir de chaque
caractère de la chaîne en prenant en compte sa position.

ainsi, dans le système décimal, la position du chiffre dans le nombre définit à quelle puissance
de 10 il appartient (unité, dizaines, centaines, etc…) Le chiffre le plus à gauche a la puissance la
plus élevée et celui le plus à droite la puissance la plus faible.

Last update: 2020/12/11 11:01 tc_info:private_s5-tpa2 https://wiki.centrale-med.fr/informatique/tc_info:private_s5-tpa2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/22 10:21

Si on suppose, pour simplifier, que chaque caractère est codé par un entier entre 0 et 255 (soit
le code ASCII "étendu"), alors toute séquence de caractères (de claviers européens) exprime un
nombre en base 256.

Un tel nombre s'appelle un "bytestring" en python.
Il existe une fonction encode qui effectue une telle traduction

Exemple :

s = 'paul.poitevin@centrale-marseille.fr'
b = s.encode()

Un nombre en base 256 est difficile à lire et interpréter. On le traduit en base 10 :

i = int.from_bytes(b, byteorder='big')
print("i =", i)

Ce qui donne :

i =
8528065861149768815100567784717691806974718591507288012415052936271731682296
24211058

Ce code est difficilement exploitable. Rappelons que l'on souhaite un code relativement compact pour
indexer nos données (ici des adresses e-mail)

Etape 2 : Réduction du code

L'opérateur modulo (% en python) donne le reste de la division entière par le deuxième opérande.

Soit H_code notre fonction de hachage :

def H_code(s, n):
 b = s.encode()
 i = int.from_bytes(b, byteorder='big')
 return i % n

Avantage :
le code retourné est plus compact

Inconvénient:
si n est une puissance de 2, ce codage revient à sélectionner les bits de poids faible. En
effet, pour un nombre exprimé en base 2, la division entière par 2^h a pour résultat les
bits de poids fort $>h$ et pour reste les h bits de poids faible.

deux données différentes peuvent alors avoir le même code si elles se terminent de
la même façon

Exemple : $n = 2^{32} = 4294967296$:
H_code(paul.poitevin@centrale-marseille.fr, n) =
1697539698
H_code(martin.mollo@centrale-marseille.fr, n) =
1697539698

deux données proches ou très similaires auront un index proche ou similaire : si j
= i + 1, H(j) = H(i) + 1 (presque toujours)

2025/12/22 10:21 3/5 Fonctions de hachage

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Exemple : $n = 2^{32} = 4294967296$:
H_code(paul.poitevin@centrale-marseille.fr, n) =
1697539698
H_code(paul.poitevin@centrale-marseille.fs, n) =
1697539699

—> il faut prendre n premier : en effet, si n est premier > 2, ses multiples ne sont pas des puissances
de 2, et la division entière par n présente un risque faible de ne sélectionner que les bits de poids
fort. Exemple :

$n = 67280421310721$ (premier):
H_code(paul.poitevin@centrale-marseille.fr, n) = 1804706371
H_code(martin.mollo@centrale-marseille.fr, n) = 3579559911

Néanmoins, de par les propriétés de la division entière, le reste de (m + 1) / n vaut 1 + m % n
presque toujours.

Exemple :

$n = 67280421310721$ (premier):
H_code(paul.poitevin@centrale-marseille.fr, n) = 1804706371
H_code(paul.poitevin@centrale-marseille.fs, n) = 1804706372

Etape 3 : combiner produit et modulo

Soient m et n deux nombres premiers entre eux :

def H_code(s, m, n):
 b = s.encode()
 i = int.from_bytes(b, byteorder='big')
 return (i * m) % n

Avantage :
deux entiers proches donneront auront des codes très différents : si j = i + 1, j * m - i *
m = m

–> il est préférable de prendre $m > n$, pour que les valeurs entières i et $i+1$ produisent des
codes arbitrairement éloignés sur l'intervalle $[0, ..., n-1]$.

Inconvénient :
deux données différentes peuvent toujours avoir le même code
le produit i * m peut etre coûteux à calculer

Collision de codes

On appelle collision le fait que deux messages différents s1 et s2 produisent un code identique, i.e.
$$H(s_1)=H(s_2)\text{ avec }s_1 \neq s_2$$

On vous donne les fonctions d'encodage et de décodage suivante :

Last update: 2020/12/11 11:01 tc_info:private_s5-tpa2 https://wiki.centrale-med.fr/informatique/tc_info:private_s5-tpa2

https://wiki.centrale-med.fr/informatique/ Printed on 2025/12/22 10:21

def encode(s):
 # chaine de caractères --> entiers naturels
 if type(s) == bytes:
 b = s
 else:
 b = s.encode()
 i = int.from_bytes(b, byteorder='big')
 return i

def decode(i):
 # entiers naturels --> chaîne de caractères
 h = hex(i)
 try:
 b = bytes.fromhex(h[2:])
 except:
 b = bytes.fromhex('0' + h[2:])
 try:
 s = b.decode() #"replace")
 except:
 s = b
 return s

ainsi que la fonction de hachage :

P1 = 67280421310721
P2 = 32416188517
def H_code(s, p = P1, m = P2):
 i = encode(s)
 return (i * p) % m

Il est assez simple de trouver deux messages de même code en modifiant les derniers caractères.

Par exemple, si on part de l'adresse mail:

print(H_code("paul.poitevin@centrale-marseille.fr"))

14361131238

print(H_code("paul.poitevin@centrale-marseiy0txYG"))

14361131238

QUESTION

Sans rien changer aux fonctions encode, decode et H_code, donner une chaîne de
caractères qui a le même H-code que votre adresse de centrale en modifiant les
premiers caractères de l'adresse mail uniquement.

Exemple :

2025/12/22 10:21 5/5 Fonctions de hachage

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Votre adresse mail : paul.poitevin@centrale-marseille.fr
Réponse attendue : w)a*9.oitevin@centrale-marseille.fr

<!-- * Pour répondre, vous devez remplir le formulaire à
l ' a d r e s s e s u i v a n t e :
{{https://goo.gl/forms/0TzUG5eQZEmZDb4L2|https://goo.gl/forms/0Tz
UG5eQZEmZDb4L2}} -->

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/tc_info:private_s5-tpa2

Last update: 2020/12/11 11:01

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:private_s5-tpa2

	[Fonctions de hachage]
	[Fonctions de hachage]
	Fonctions de hachage
	Etape 1 : transcodage binaire des données
	Etape 2 : Réduction du code
	Etape 3 : combiner produit et modulo
	Collision de codes

