2026/01/10 22:22 1/3 TD 6

TD 6

Partie A : tableaux statiques

Exercice 1

On considere un ensemble de k données stockés dans un tableau de données statique T de n cases
(avec O<k = n).

Remarques :

e Les cases du tableau sont numérotées de @ a n-1

e Les données sont de type quelconque mais chague case ne peut contenir qu'une donnée
e Si i est unindice de case, T[i] désigne le contenu de la case

* n est fixé mais k varie en fonction du nombre de données stockées

1. Le stockage est dense, autrement dit: les données sont stockés dans les k premieres cases du
tableau. Ainsi, les cases de 0 a k-1 sont occupées et l'indice k désigne la premiere case libre.

e Ecrire un algorithme permettant d’insérer une nouvelle donnée t dans le tableau T

e Ecrire un algorithme de recherche qui prend en argument une donnée t et retourne :
o le numéro de toutes les cases contenant t si t est présent dans le tableau
o une liste vide sinon ("donnée absente")

e Ecrire un algorithme de suppression prend en argument une donnée t et :
o supprime toutes les occurrences de t du tableau si t est présent dans le tableau
o Ne fait rien sinon

e Donner la complexité de ces algorithmes.

2. On suppose maintenant qu'il n’y a pas de doublons dans le tableau, autrement ditV i,j <k, sii #
jalors T[i] # T[j]. Réécrire les algorithmes de recherche, d'insertion et de suppression et donner
leur complexité.

3. On suppose maintenant qu'il existe un ordre < sur les données. V i,j <k, sii < jalors T[i] <
T[j1. Réécrire les algorithmes de recherche, d'insertion et de suppression et donner leur complexité.

4. Que faire quand le tableau est plein?

Exercice 2 (*)

On appelle liste une structure abstraite ordonnée telle que I'on puisse accéder de maniere directe a
I'élément i et a laquelle on puisse ajouter (et supprimer) autant d'éléments que I'on souhaite. Une
caractéristique importante de cette structure est son nombre d'éléments k.

Une implémentation des listes peut étre effectuée comme suit:

e On commence par créer un tableau de taille n = 1, le nombre initial d'éléments étant k = 0
* A chaque ajout d'élément:
osik < n,

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Last update: 2019/11/20 13:21 tc_info:td2:imprimable https://wiki.centrale-med.fr/informatique/tc_info:td2:imprimable

= ajouter I'élément a la position k
s kek + 1
o sinon :
» allouer untableaua 2 * nélémentsetnen * 2
= copier les k premiers éléments du tableau initial dans le nouveau tableau &
supprimer le tableau initial.
= ajouter |'élément a la position k
s kek + 1

Montrez que la complexité de I'ajout de k éléments a la fin d’une liste originellement vide est O(k).

Partie B : Tables de hachage

Soit U un “univers” dont les éléments sont appelés clés. Soit E un ensemble de clés.
On suppose que I'on a une fonction h:U -> {0, ... n-1}, dite fonction de hachage (ou

'\) hashcode). Une table de hachage est un tableau T de taille n tel que T[1] est une
liste contenant les éléments x de E tels que h(x)=1i. Si deux éléments de E ont le
méme hashcode, on dit qu'il y a collision.

Exercice 1

Donnez des algorithmes pour rechercher, insérer & supprimer un élément dans une table de hachage.
Donnez leur complexité dans le cas le meilleur, le pire & en moyenne.

(**) Déduisez-en la valeur optimale (en ordre de grandeur) de n en fonction du nombre d'éléments
stockés k, ainsi qu'une contrainte sur la fonction de hachage.

Exercice 2

Il arrive souvent que I'on ne sache pas a l'avance combien d'éléments contient E & que I'on mette les
éléments de E dans T I'un apres I'autre sans savoir quand on s'arrétera. Donnez une " politique"
efficace de gestion de la taille de T.

Exercice 3 (*)

Soit S un ensemble de nombres a trier, on répartit S en une table de hachage tel que la fonction de
hachage soit croissante (x< y = h(x) =< h(y)). On trie chaque paquet, puis on concatene. On appelle ce
tri le tri par paquets.

e Donnez une fonction de hachage simple & croissante.
* Quelle est la complexité de cet algorithme dans le cas le meilleur, le pire & en moyenne.

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/10 22:22

2026/01/10 22:22 3/3 TD 6

Partie C : dictionnaires

Un dictionnaire est une structure de données (python) qui se présente ainsi:

D = {clé 1:valeur 1, clé 2:valeur 2, ..., clé n:valeur n}

Les clés pouvant étre de (presque) n'importe que type (& pas seulement I'ensemble
{0,..,n-1} comme avec une liste).

\"P e On accede a valeur i, lavaleur associée a clé iparD[clé i].
e L'opérationD[clé p] « valeur p,
o si clé p n'est pas une clé de D, ajoute cette nouvelle clé a D & lui associe
la valeur valeur p
o si clé p est déja une clé de D, elle change la valeur qui lui est associée
en valeur p.

Exercice 1

Donnez une implémentation efficace des dictionnaires. Quelle est alors la complexité (dans le cas le
meilleur, le pire & en moyenne) des fonctions de base (recherche, ajout d'un élément,...) sur un
dictionnaire.

Exercice 2

Utilisez un dictionnaire pour écrire un algorithme qui compte le nombre d'occurrences de chaque mot
d'un texte.

Exercice 3

Utilisez un dictionnaire pour écrire un algorithme qui supprime les doublons d'une liste. Donnez sa
complexité (dans le cas le pire, le meilleur & en moyenne).

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/tc_info:td2:imprimable

Last update: 2019/11/20 13:21

WiKi informatique - https://wiki.centrale-med.fr/informatique/

https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:td2:imprimable

	[TD 6]
	TD 6
	Partie A : tableaux statiques
	Exercice 1
	Exercice 2 (*)

	Partie B : Tables de hachage
	Exercice 1
	Exercice 2
	Exercice 3 (*)

	Partie C : dictionnaires
	Exercice 1
	Exercice 2
	Exercice 3

