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Le sujet

Partie A

Soit $U$ un “univers” dont les éléments sont appelés clés. Soit $E$ un ensemble de
clés. On suppose que l'on a une fonction $h:U\to \{0,\ldots m-1\}$, dite fonction de
hachage (ou hashcode). Une table de hachage est un tableau $T[0 \ldots m-1]$ tel que
$T[i]$ est une liste contenant les éléments $x$ de $E$ tels que $h(x)=i$. Si deux
éléments de $E$ ont le même hashcode, on dit qu'on a collision.

Exercice 0

Donnez des algorithmes pour rechercher, insérer & supprimer un élément dans une table de hachage.
Donnez leur complexité dans le cas le meilleur, le pire & en moyenne.

Déduisez-en la valeur optimale (en ordre de grandeur) de $m$ en fonction de $n$, ainsi qu'une
contrainte sur la fonction de hachage.

Exercice 1

On considère les deux fonctions de hachage suivantes :

La méthode de la division : $h(x) = x \: \mathrm{mod}\: m$.
La méthode de la multiplication : $h(k) = E(m\cdot \mathrm{Frac}(x\cdot A))$, où :

$A$ est un nombre de $[0\ldots1]$
$E$ est la partie entière & Frac la partie fractionnaire $(\mathrm{Frac}(x)=x-E(x))$

Donnez, pour ces deux méthodes, des bonnes valeurs pour les paramètres $m$ & $A$.

Exercice 2

Dans le hachage cryptographique, on veut en plus que, connaissant $x$ (& $h(x)$), il soit impossible
(à moins de ressources en temps de calcul rédhibitoires) de construire $y\ne x$ tel que $h(y) = h(x)$.
Donnez des exemples d'applications du hachage cryptographique.

Exercice 3

Il arrive souvent que l'on ne sache pas à l'avance combien d'éléments contient $E$ & que l'on mette
les éléments de $E$ dans $T$ l'un après l'autre sans savoir quand on s'arrêtera. Donnez une
``politique" efficace de gestion de la taille de $T$.
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Exercice 4

Soit $S$ un ensemble de nombres à trier, on répartit $S$ en une table de hachage tel que la fonction
de hachage soit croissante ($x\leq y \Longrightarrow h(x) \leq h(y)$). On trie chaque paquet, puis on
concatène. On appelle ce tri le tri par paquets.

Donnez une fonction de hachage simple & croissante.
Quelle est la complexité de cet algorithme dans le cas le meilleur, le pire & en moyenne.

Partie B

Un dictionnaire est une structure de données (python) qui se présente ainsi~:

D = {clé_1:valeur_1, clé_2:valeur_2, ..., clé_n:valeur_n}

Les clés pouvant être de (presque) n'importe que type (& pas seulement l'ensemble
$\{0,...,$ $n-1\}$ comme avec une liste).

On accède à valeur_i, la valeur associée à clé_i par D[clé_i].
L'opération D[clé_p] $\gets$ D[valeur_p],

si clé_p n'est pas une clé de D, ajoute cette nouvelle clé à D & lui associe
la valeur valeur_p
si clé_p est déjà une clé de D, elle change la valeur qui lui est associée
en valeur_p.

Exercice 5

Donnez une implémentation efficace des dictionnaires. Quelle est alors la complexité (dans le cas le
meilleur, le pire & en moyenne) des fonctions de base (recherche, ajout d'un élément,…) sur un
dictionnaire.

Exercice 6

Utilisez un dictionnaire pour écrire un algorithme qui supprime les doublons d'une liste. Donnez sa
complexité (dans le cas le pire, le meilleur & en moyenne).

Exercice 7

Utilisez un dictionnaire pour écrire un algorithme qui compte le nombre d'occurrences de chaque mot
d'un texte. Donnez sa complexité (dans le cas le pire, le meilleur & en moyenne).



2026/01/11 18:02 3/3 Partie A

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Partie C

Exercice 8

Table d'allocation

On considère un tableau $T$ de taille $n$ dans lequel

$p<n$ cases sont occupées. Chaque donnée $d$ est indexée par l'adresse $i<n$ donnant sa
position dans le tableau & on connaît sa taille $m$ ($d$ occupe $m$ cases consécutives de
$T$).
On suppose de plus

que la table d'allocation des différentes cases du tableau est codé au format binaire dans
un entier $B$ de $n$ bits :

  B=0010010100100...01

qu'il existe une fonction $f(B,i)$ donnant le i$^{eme}$ bit de $B$ ($f(B,i)$ vaut 1 si la
i$^{eme}$ case de $T$ est occupée, & 0 si elle est libre).

Écrire un algorithme permettant d'insérer une donnée $d$ dans le premier bloc de $m$ cases
disponible (pensez à mettre à jour la table d'allocation $B$).

Peut-on faire mieux en appliquant un pré-traitement à $B$~?

Ancien sujet
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