
2026/01/11 18:02 1/3 Partie A

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Le sujet

Partie A

Soit U un “univers” dont les éléments sont appelés clés. Soit E un ensemble de
clés. On suppose que l'on a une fonction $h:U\to \{0,\ldots m-1\}$, dite fonction de
hachage (ou hashcode). Une table de hachage est un tableau $T[0 \ldots m-1]$ tel que
$T[i]$ est une liste contenant les éléments x de E tels que $h(x)=i$. Si deux
éléments de E ont le même hashcode, on dit qu'on a collision.

Exercice 0

Donnez des algorithmes pour rechercher, insérer & supprimer un élément dans une table de hachage.
Donnez leur complexité dans le cas le meilleur, le pire & en moyenne.

Déduisez-en la valeur optimale (en ordre de grandeur) de m en fonction de n, ainsi qu'une
contrainte sur la fonction de hachage.

Exercice 1

On considère les deux fonctions de hachage suivantes :

La méthode de la division : $h(x) = x \: \mathrm{mod}\: m$.
La méthode de la multiplication : $h(k) = E(m\cdot \mathrm{Frac}(x\cdot A))$, où :

A est un nombre de $[0\ldots1]$
E est la partie entière & Frac la partie fractionnaire $(\mathrm{Frac}(x)=x-E(x))$

Donnez, pour ces deux méthodes, des bonnes valeurs pour les paramètres m & A.

Exercice 2

Dans le hachage cryptographique, on veut en plus que, connaissant x (& $h(x)$), il soit impossible
(à moins de ressources en temps de calcul rédhibitoires) de construire $y\ne x$ tel que $h(y) = h(x)$.
Donnez des exemples d'applications du hachage cryptographique.

Exercice 3

Il arrive souvent que l'on ne sache pas à l'avance combien d'éléments contient E & que l'on mette
les éléments de E dans T l'un après l'autre sans savoir quand on s'arrêtera. Donnez une
``politique" efficace de gestion de la taille de T.

https://wiki.centrale-med.fr/informatique/_media/tc_info:td_4-2pages.pdf

Last update: 2019/07/31 11:03 tc_info:td4-2018-2019 https://wiki.centrale-med.fr/informatique/tc_info:td4-2018-2019

https://wiki.centrale-med.fr/informatique/ Printed on 2026/01/11 18:02

Exercice 4

Soit S un ensemble de nombres à trier, on répartit S en une table de hachage tel que la fonction
de hachage soit croissante ($x\leq y \Longrightarrow h(x) \leq h(y)$). On trie chaque paquet, puis on
concatène. On appelle ce tri le tri par paquets.

Donnez une fonction de hachage simple & croissante.
Quelle est la complexité de cet algorithme dans le cas le meilleur, le pire & en moyenne.

Partie B

Un dictionnaire est une structure de données (python) qui se présente ainsi~:

D = {clé_1:valeur_1, clé_2:valeur_2, ..., clé_n:valeur_n}

Les clés pouvant être de (presque) n'importe que type (& pas seulement l'ensemble
$\{0,...,$ $n-1\}$ comme avec une liste).

On accède à valeur_i, la valeur associée à clé_i par D[clé_i].
L'opération D[clé_p] \gets D[valeur_p],

si clé_p n'est pas une clé de D, ajoute cette nouvelle clé à D & lui associe
la valeur valeur_p
si clé_p est déjà une clé de D, elle change la valeur qui lui est associée
en valeur_p.

Exercice 5

Donnez une implémentation efficace des dictionnaires. Quelle est alors la complexité (dans le cas le
meilleur, le pire & en moyenne) des fonctions de base (recherche, ajout d'un élément,…) sur un
dictionnaire.

Exercice 6

Utilisez un dictionnaire pour écrire un algorithme qui supprime les doublons d'une liste. Donnez sa
complexité (dans le cas le pire, le meilleur & en moyenne).

Exercice 7

Utilisez un dictionnaire pour écrire un algorithme qui compte le nombre d'occurrences de chaque mot
d'un texte. Donnez sa complexité (dans le cas le pire, le meilleur & en moyenne).

2026/01/11 18:02 3/3 Partie A

WiKi informatique - https://wiki.centrale-med.fr/informatique/

Partie C

Exercice 8

Table d'allocation

On considère un tableau T de taille n dans lequel

$p<n$ cases sont occupées. Chaque donnée d est indexée par l'adresse $i<n$ donnant sa
position dans le tableau & on connaît sa taille m (d occupe m cases consécutives de
T).
On suppose de plus

que la table d'allocation des différentes cases du tableau est codé au format binaire dans
un entier B de n bits :

 B=0010010100100...01

qu'il existe une fonction $f(B,i)$ donnant le ieme bit de B ($f(B,i)$ vaut 1 si la
ieme case de T est occupée, & 0 si elle est libre).

Écrire un algorithme permettant d'insérer une donnée d dans le premier bloc de m cases
disponible (pensez à mettre à jour la table d'allocation B).

Peut-on faire mieux en appliquant un pré-traitement à B~?

Ancien sujet

From:
https://wiki.centrale-med.fr/informatique/ - WiKi informatique

Permanent link:
https://wiki.centrale-med.fr/informatique/tc_info:td4-2018-2019

Last update: 2019/07/31 11:03

https://wiki.centrale-med.fr/informatique/tc_info:td7-alt
https://wiki.centrale-med.fr/informatique/
https://wiki.centrale-med.fr/informatique/tc_info:td4-2018-2019

	[Partie A]
	Partie A
	Exercice 0
	Exercice 1
	Exercice 2
	Exercice 3
	Exercice 4

	Partie B
	Exercice 5
	Exercice 6
	Exercice 7

	Partie C
	Exercice 8

