Afficher la pageAnciennes révisionsLiens de retourAjouter au livre.Exporter en PDFHaut de page Cette page est en lecture seule. Vous pouvez afficher le texte source, mais ne pourrez pas le modifier. Contactez votre administrateur si vous pensez qu'il s'agit d'une erreur. === Mathematics 1A === ** General information ** * Course name in French: Mathématiques 1A * ECTS credits: 5 * Level : Undergraduate (Bachelor 3rd year) * Teaching hours: 96 hours (Lectures = 36 hours, Tutorials = 36 hours, Self-study = 24 hours) * Language of instruction: French * Coordinator: Jacques Liandrat * Instructor(s): Jacques Liandrat, Guillaume Chiavassa, Mitra Fouladirad, Frédéric Schwander, Jean-Marie Rossi, Thibaut Le Gouic, Chiheb Daaloul, Emmanuelle Sarrouy, Christophe Pouet * Last update 18/02/2022 by C. Pouet ** <color red> This course unit is offered twice a year. </color> ** Students can attend this course during * Fall-Winter Semester: from early September until end of January/early February * Spring Semester: from early February until end of June ==== Brief description ==== This course is a basic course in Mathematics for any student in engineering. It is divided into three equal parts: * Mathematical analysis (Analyse théorique in French) * Numerical analysis (Analyse numérique in French) * Probability and statistics (Probabilités et statistique in French) ==== Learning outcomes ==== * tba ==== Prerequisites ==== * Undergraduate level in * Mathematical analysis: Riemann integral, change of variable, derivatives, limits, sequences * Linear algebra: vector, matrix, vector space, scalar product, determinant, matrix diagonalization, change of basis ==== Assessment ==== * Final exam: 50% * Continuous assessment: 50% (project, quiz, lab report) ==== Course content ==== - Mathematical analysis * Differential calculus * Optimization * Lebesgue integral * Fourier transform and Fourier series * Hilbert spaces - Numerical analysis * tba - Probability and Statistics * Sigma-algebra, probability measure * Real random variables (discrete and continuous) * Expectation, variance * Random vector, covariance, variance matrix * Independence * Strong and weak law of large numbers * Central Limit Theorem * Introduction to statistics: statistical experiment, quadratic risk, bias, pointwise estimation, Maximum Likelihood Method, confidence interval ==== Bibliography ==== en/mat1a.txt Dernière modification : 2022/04/08 14:57de cpouet