Table des matières

Course unit: Data and Decisions

Course metadata

Brief description

This course unit is divided into four parts:

Learning outcomes

Course content

Statistical learning

  1. Introduction
    1. Classical problems: regression, classification
    2. Supervised, unsupervised and semi-supervised learning
    3. Curse of dimensionality
  2. Regression
    1. Multiple linear regression, OLS method
    2. Shrinkage-type methods (LASSO, Ridge)
    3. k-nearest neighbors
  3. Classification
    1. Logistic regression
    2. k-nearest neighbors
    3. SVM
    4. Rosenblatt perceptron and neuronal networks

Python for data science

  1. Dataframe: data exploration and data description
  2. Recommendation systems (including KNN, PCA and SVD)
  3. Data visualization (including maps, geopandas, …)

Data-driven decision making

  1. What is data?
  2. How do we take decision?
  3. Data governance and data quality
  4. How to develop data-based decision making?
  5. Data platform and data architecture

Data Project: data sources and preprocessing

tba

Bibliography

You can check the availability of the books below at Centrale Méditerranée library.

  1. Statistical Learning
    • James G., Witten D., Hastie T. and al. (2013). An introduction to statistical learning: with applications in R. New York: Springer
    • Hastie T., Tibshirani R. and Friedman J. (2013). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.
    • Cornillon P-A., Matzner-Løber E. et al. (2010). Régression avec R. Paris: Springer.
  2. Python for data science
    • Jannach, D., Zanker, M., Felfernig, A. and Friedrich, G. (2010). Recommender Systems: An Introduction. Cambridge.
  3. Advising using data
    • tba