en:ddefidode2022

  • Title in French: Données et Décisions
  • Course code: tba
  • ECTS credits: 4
  • Type: advanced course
  • Semester 9 (Fall-Winter)
  • Teaching period: Mid-November to Mid-February
  • Teaching hours: 100h
  • Language of instruction: French
  • Coordinator: tba
  • Instructor(s): Marie Billaud-Friess, Michaël Chalamel (L'Oréal), Franck Chevalier (EY), Emmanuel Daucé, Christophe Pouet, , Sitraka Forler (Post Luxembourg), Lirone Samoun (smartpush)
  • Last update 02/09/2025 by C. Pouet

This course unit is divided into four parts:

  • Statistical learning (30 hours) taught by Christophe Pouet.
  • Python for data science (18 hours) taught by François Brucker and Emmanuel Daucé.
  • Advising using data (24 hours) taught by Michaël Chalamel and Franck Chevalier.
  • Data Project: data sources and preprocessing (24 hours) taught by Sitraka Forler and Lirone Samoun.
  • Know how to model and program an estimation problem
  • Know how to model and program a classification problem
  • Know how to acquire and aggregate data
  • Know how to use data to take decisions
  • Understand the importance of data governance and data quality

Statistical learning

  1. Introduction
    1. Classical problems: regression, classification
    2. Supervised, unsupervised and semi-supervised learning
    3. Curse of dimensionality
  2. Regression
    1. Multiple linear regression, OLS method
    2. Shrinkage-type methods (LASSO, Ridge)
    3. k-nearest neighbors
  3. Classification
    1. Logistic regression
    2. k-nearest neighbors
    3. SVM
    4. Rosenblatt perceptron and neuronal networks

Python for data science

  1. Dataframe: data exploration and data description
  2. Recommendation systems (including KNN, PCA and SVD)
  3. Data visualization (including maps, geopandas, …)

Data-driven decision making

  1. What is data?
  2. How do we take decision?
  3. Data governance and data quality
  4. How to develop data-based decision making?
  5. Data platform and data architecture

Data Project: data sources and preprocessing

tba

You can check the availability of the books below at Centrale Méditerranée library.

  1. Statistical Learning
    • James G., Witten D., Hastie T. and al. (2013). An introduction to statistical learning: with applications in R. New York: Springer
    • Hastie T., Tibshirani R. and Friedman J. (2013). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.
    • Cornillon P-A., Matzner-Løber E. et al. (2010). Régression avec R. Paris: Springer.
  2. Python for data science
    • Jannach, D., Zanker, M., Felfernig, A. and Friedrich, G. (2010). Recommender Systems: An Introduction. Cambridge.
  3. Advising using data
    • tba
  • en/ddefidode2022.txt
  • Dernière modification : 2025/09/18 10:36
  • de cpouet