en:ddefiando2022

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
en:ddefiando2022 [2024/06/28 15:18] – modification externe 127.0.0.1en:ddefiando2022 [2024/07/26 11:31] (Version actuelle) cpouet
Ligne 11: Ligne 11:
   * Language of instruction: French   * Language of instruction: French
   * Coordinator: tba   * Coordinator: tba
-  * Instructor(s): Augustin Amann (S4M), Vincent Archer (S4M), Aurélien Poissonier (DGAFP), Régis Chenavaz (Kedge BS), Antoine Winckels (Air France) +  * Instructor(s): Augustin Amann (S4M), Vincent Archer (S4M), Aurélien Poissonier (DGAFP), Regis Chenavaz (Kedge BS), Antoine Winckels (Air France) 
-  * //Last update 04/07/2022 by C. Pouet//+  * //Last update 26/07/2024 by C. Pouet//
  
 ==== Brief description ==== ==== Brief description ====
Ligne 19: Ligne 19:
   *  **Quantitative marketing** (24 hours) taught by Augustin Amann and Vincent Archer,   *  **Quantitative marketing** (24 hours) taught by Augustin Amann and Vincent Archer,
   *  **Data and macroeconomics** (24 hours) taught by Aurélien Poissonier,   *  **Data and macroeconomics** (24 hours) taught by Aurélien Poissonier,
-  *  **Yield management** (24 hours) taught by Régis Chenavaz and Antoine Winckels,+  *  **Applied data science** (24 hours) taught by Nathan Rouff and Antoine Winckels,
   * **Data Project:  modeling and validation ** (20 hours) taught by tba.   * **Data Project:  modeling and validation ** (20 hours) taught by tba.
  
Ligne 32: Ligne 32:
 ==== Course content ==== ==== Course content ====
 === Quantitative marketing=== === Quantitative marketing===
-   Data processing +   Introduction to prescriptive analytics 
-     * Data: a story of representation +   Interpretability and maching learning 
-     * Data in business +   - Application to revenue management 
-     * From segmentation to dynamic targeting +   - Application to predictive maintenance
-  Marketing from a Data Scientist point of view +
-     * Context: the data world +
-     * Scoring +
-     * Statistics +
-     * Correlations +
-     * Automatic learning +
-     * Supervised classification +
-     * Perspectives+
 === Data and macroeconomics === === Data and macroeconomics ===
 This course aims at giving a broad view of macroeconomic data. It is structured around three questions: This course aims at giving a broad view of macroeconomic data. It is structured around three questions:
  • en/ddefiando2022.1719580691.txt.gz
  • Dernière modification : 2024/06/28 15:18
  • de 127.0.0.1